PRK18B Trigger high-speed, retro-reflective sensors for bottles

$1 \leftrightarrow$

0 ... 3.6m

- Trigger high-speed, retro-reflective photoelectric sensors with autocollimation optics for reliable detection of highly transparent bottles
- Sensitivity adjustment via teach button or teach input
- Temperature compensation $\pm 20^{\circ} \mathrm{C}$
- High optical accuracy through calibrated optical system
- Very short response time and optimized signal jitter

Accessories:

(available separately)

- Mounting system (BTU 200, BT 95)
- M12 connection technology (K-D M12)
- Reflectors (TK, MTK)
- Reflective tape (REF)
- Deflecting mirrors (US18B)

Dimensioned drawing

A Display
Teach button
270° potentiometer
11-turn potentiometer
Optical axis
F Optical accuracy
G Reference plane for \mathbf{F}

Electrical connection

	Pin 1	Pin 2	Pin 3	Pin 4
PRK18B.FXT3/4P-M12	+	PNP dark	GND	PNP light
PRK18B.FXT3/2N-M12	+	NPN dark	GND	NPN light
PRK18B.FXT3/4P-6000	+	PNP dark	GND	PNP light
PRK18B.FXT3/2N-6000	+	NPN dark	GND	NPN light
PRK18B.FXT3/2T-6000	+	Teach/ multifunction	GND	NPN light

Specifications

Optical data

Typ. op. range limit (TK(S) 100x100) 1)
Operating ranges ${ }^{2)}$
Light source 3)
Wavelength
Optical accuracy

Timing

Switching frequency
Response time
Jitter time
Delay before start-up

Electrical data

Operating voltage UB4)
Residual ripple
Open-circuit current
Switching outputs/functions

Indicators

Green LED
Yellow LED
Yellow/green LED, flashing synchronously (9 Hz)

Mechanical data

Housing 5)
Connector
Optics
Operation
Weight
Connection type

Environmental data

Ambient temp. (operation/storage)
Protective circuit ${ }^{6)}$
VDE safety class ${ }^{7}$)
Degree of protection
Light source
Standards applied
Certifications
Chemical resistance

Options

Input pin 2

Function
Input active/not active

2 PNP switching outputs, antivalent
/PX $\quad 1$ PNP switching output, light switching
1 PNP switching output, dark switching
$2 N \quad 2$ NPN switching outputs, antivalent
$\begin{array}{ll}\text { /2N } & 2 \text { NPN switching outputs, antivalent } \\ \text { /2X } & 1 \text { NPN switching output, light switching } \\ \text { /NX } & 1 \text { NPN switching output, dark switching }\end{array}$
/NX $\quad 1$ NPN switching output, dark switching
/2T $\quad 1$ NPN switching output, light switching,
1 multifunction input (teach)
$\geq(\mathrm{UB}-2 \mathrm{~V}) / \leq 2 \mathrm{~V}$
max. 100 mA
adjustable via teach button
(see order guide)
0 ... 3.6m
see tables
LED (modulated light)
620 nm (visible red light)
type dependent (see order guide)

5000 Hz
$100 \mu \mathrm{~s}$
$32 \mu \mathrm{~s}$
$<300 \mathrm{~ms}$
$10 \ldots$ 30VDC (incl. residual ripple)
$\leq 15 \%$ of UB
$\leq 18 \mathrm{~mA}$

1 PNP switching output, light switching
(see order guide)
ready
light path free
error
diecast zinc, chemically nickel-plated diecast zinc, chemically nickel-plated glass
teach button
with M12 connector: 60 g
with 6000 mm cable: 240 g
M12 connector, 4-pin
cable $6000 \mathrm{~mm}, 4 \times 0.20 \mathrm{~mm}^{2}$
$-40^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
2, 3
III
IP67, IP 69K
exempt group (in acc. with EN 62471)
IEC 60947-5-2
UL 508, C22.2 No.14-13 4) 8)
tested in accordance with ECOLAB
keyboard lockout / line teach /
light/dark switching
$\geq 8 \mathrm{~V} / \leq 2 \mathrm{~V}$ or not connected

1) Typ. operating range limit: max. attainable range without performance reserve
2) Operating range: recommended range with performance reserve
3) Average life expectancy $100,000 \mathrm{~h}$ at an ambient temperature of $25^{\circ} \mathrm{C}$
4) For UL applications: use is permitted exclusively in Class 2 circuits according to NEC
5) Color changes due to cleaning agents do not adversely affect the coating
6) $2=$ polarity reversal protection, $3=$ short circuit protection for all transistor outputs
7) Rating voltage 50 V
8) These proximity switches shall be used with UL Listed Cable assemblies rated 30V, 0.24 A min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)

Tables

Reflectors		Operating range	
1	TK(S)	100×100	$0 \ldots 3.0 \mathrm{~m}$
2	MTKS	50×50.1	$0 \ldots 2.8 \mathrm{~m}$
3	TK(S)	40×60	$0 \ldots 2.5 \mathrm{~m}$
4	TK(S)	30×50	$0 \ldots 1.1 \mathrm{~m}$
5	TK(S)	20×40	$0 \ldots 1.1 \mathrm{~m}$
6	Tape 6	50×50	$0 \ldots 0.8 \mathrm{~m}$

[^0]Diagrams
Typ. object gap with MTKS 50×50.1 at 400 mm

A 11% sensor sensitivity
B 18\% sensor sensitivity
C 100% sensor sensitivity

Remarks

Operate in accordance with intended use!
${ }^{4}$ This product is not a safety sensor and is not intended as personnel protection.
$\stackrel{4}{4}$ The product may only be put into operation by competent persons.
${ }^{4}$ Only use the product in accordance with the intended use.

- Reflectors;

The light spot may not extend beyond the reflector. Preferably use MTK(S) reflectors or reflective tape 6.

PRK18B
Trigger high-speed, retro-reflective sensors for bottles

Part number code

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l}
\hline \mathbf{P} & \mathbf{R} & \mathbf{K} & \mathbf{1} & \mathbf{8} & \mathbf{B} & . & \mathbf{F} & \mathbf{X} & \mathbf{T} & \mathbf{T} & \mathbf{3} & \mathbf{I} & \mathbf{4} & \mathbf{P} & \mathbf{-} & \mathbf{M} & \mathbf{1} \\
\hline
\end{array}
$$

Operating principle
PRK Retro-reflective photoelectric sensor for bottles

RK Retro-reflective photoelectric sensor for tape (Function against any reflective tapes and glass triple reflectors)

Series	
18B	18B series
Timing	
F	High speed
free	Standard

Optical accuracy

\mathbf{X}	Optical axis aligned, shift angle $< \pm 0.25^{\circ}$
Free	Standard

Free Standard
Detection properties

\mathbf{T}	Setting of 11% is possible
free	Setting of 11% is not possible

Tracking function available

T1)	Tracking function/contamination compensation
free	No tracking function

Setting

$1 \quad 270^{\circ}$ potentiometer
2 11-turn potentiometer

3 Teach button
free No setting
Pin assignment of connector pin 4 / black cable wire

$\mathbf{2}$	NPN, light switching
N	NPN, dark switching
$\mathbf{4}$	PNP, light switching
P	PNP, dark switching
L	IO-Link

Pin assignment of connector pin 2 / white cable wire

\mathbf{X}	Not assigned
$\mathbf{2}$	NPN, light switching
\mathbf{N}	NPN, dark switching
$\mathbf{4}$	PNP, light switching
\mathbf{P}	PNP, dark switching
T	Teach input

Connection technology
M12 M12 connector, 4-pin

6000 Cable 6 m

[^1]
Order guide

The sensors listed here are preferred types; current information at www.leuze.com.

Selection table		Order code \rightarrow					
Switching output	$1 \times$ PNP, light switching						
	$1 \times$ PNP, dark switching						
	$2 \times$ PNP, antivalent		\bullet		\bullet		
	1x NPN, light switching						\bullet
	$1 \times$ NPN, dark switching						
	$2 \times \mathrm{NPN}$, antivalent			\bullet		\bullet	
	$1 \times 10-L i n k, 1 \times$ PNP, dark switching						
	$1 \times 10-L i n k, 1 \times$ NPN, dark switching						
Optical accuracy	calibrated $\leq \pm 0.25^{\circ}$		\bullet	\bullet	\bullet	\bullet	\bullet
Switching frequency/response time/jitter	$500 \mathrm{~Hz} / 1 \mathrm{~ms} / 320 \mu \mathrm{~s}$						
	1500Hz/333 $/$ s/110 $\mu \mathrm{s}$						
	$5000 \mathrm{~Hz} / 100 \mu \mathrm{~s} / 32 \mu \mathrm{~s}$		\bullet	\bullet	\bullet	\bullet	\bullet
Detection properties	highly transparent bottles and glasses		\bullet	\bullet	\bullet	\bullet	\bullet
	highly transparent tape $<20 \mu \mathrm{~m}$ thick						
	transparent containers		\bullet	-	-	\bullet	\bullet
Tracking function	exists						
Setting	270° potentiometer						
	11-turn potentiometer						
	teach button		\bullet	\bullet	\bullet	\bullet	\bullet
	multifunction input (pin 2) for teach-in, keyboard lockout, light/dark switching						\bullet
Connection technology	M12 connector		\bullet	\bullet			
	cable, 6000 mm				\bullet	-	\bullet

Sensor setting via teach button

- The sensor is factory-adjusted for maximum operating range.

Recommendation: teach only if the desired objects are not reliably detected.

- Prior to teaching:

Clear the light path to the reflector!
The device setting is stored in a fail-safe way. A reconfiguration following voltage interruption or switch-off is thus not required.

Teach for 11% sensor sensitivity

(full single bottles or tape with thickness $>\mathbf{2 0} \mu \mathrm{m}$)

- Press teach button until both LEDs flash simultaneously.
- Release teach button.
- Ready.

After the teaching, the sensor switches when about 11% of the light beam are covered by the object.

PRK18B

Trigger high-speed, retro-reflective sensors for bottles

Teaching for 18% sensor sensitivity

(empty single bottles and other partially transparent objects)

- Press teach button until both LEDs flash alternatingly.
- Release teach button.
- Ready.

After the teaching, the sensor switches when about
18% of the light beam are covered by the object.

Teaching for maximum operating range (factory setting at delivery)

- Prior to teaching: Interrupt the light path to the reflector!

- Press teach button until both LEDs flash simultaneously.
- Release teach button.
- Ready.

Adjusting the switching behavior of the switching output - light/dark switching

- Press teach button until only the green LED flashes
- Release the teach button. The yellow LED displays the light/dark switching status for 2s:
- Yellow LED ON = switching outputs inverted
- Yellow LED OFF = switching outputs not inverted (factory settings)
- After 2s: ready

LED yellow
ON = switching outputs inverted
OFF = switching outputs not inverted

Sensor adjustments via the multifunction input (pin 2)

Prior to teaching: Clear the light path to the reflector!
The device setting is stored in a fail-safe way. A reconfiguration following voltage interruption or switch-off is thus not required.

The following description applies to PNP switching logic!
Signal level LOW $\leq \mathbf{2 V}$
Signal level HIGH $\geq\left(U_{B}-2 V\right)$
With the NPN models, the signal levels are inverted!

Teach for $\mathbf{1 1 \%}$ sensor sensitivity (full single bottles or tape with thickness $\mathbf{>} \mathbf{2 0 \mu m}$)

Teaching for 18% sensor sensitivity (empty single bottles and other partially transparent objects)

Switching behavior: light switching

Switching behavior: dark switching

Locking the teach button via multifunction input (pin 2)

A static HIGH signal ($\geq 20 \mathrm{~ms}$) at the teach input locks the teach button on the sensor if required, such that no manual operation is possible (e.g., protection from erroneous operation or manipulation).
If the teach input is not connected or if there is a static low signal, the button is unlocked and can be operated freely.

[^0]: Operating range [m] Typ. operating range limit [m]

 TK ... = adhesive
 TKS ... = screw type

[^1]: 1) Only possible in conjunction with the detection property "T".
