Energy Management Energy Analyzer Type EM26 96

- M-bus communication by means of VMU-B adapter
- Application adaptable display and programming
procedure (Easyprog function)
- Easy connections management
- Certified according to MID Directive (option PF only): see "how to order" below
- Other versions available (not certified, option XX): see "how to order" on the next page

Class 1 (kWh) according to EN62053-21

- Class B (kWh) according to EN50470-3
- Class 2 (kvarh) according to EN62053-23
- Accuracy $\pm 0.5 \%$ RDG (current/voltage)
- Dual colour backlight: no backlight, blue or white (selectable)
- Energy analyzer
- Instantaneous variables readout: 4 DGT
- Energies/gas/water readout: 8 DGT
- System variables: VLL, VLN, Admd, VA, VAdmd, VAdmd max, W, Wdmd, Wdmd max, var, PF, Hz, Phase-sequence.
- Single phase variables: VLL, VLN, A, VA, W, var, PF
- Energy measurements: total and partial kWh and kvarh or based on 4 different tariffs; single phase measurements
- Gas, cold water, hot water, kWh remote heating measurements
- Hour counter (6+2 DGT)
- Harmonic analysis (FFT) up to 15th harmonic (current/voltage)
- TRMS measurements of distorted sine waves (voltages/currents)
- Universal power supply: 90 to 260AC/VDC
- 3 digital inputs for tariff selection, DMD synch or gas/water (hotcold) and remote heating metering (on request)
- 3 digital outputs for pulses or for alarms or as a mix of them (on request)
- Front dimensions: 96x96mm
- Protection degree (front): IP50
- RS485 serial output (on request) (MODBUS-RTU), iFIX SCADA compatibility

Product Description

Three-phase energy analyzer with built-in configuration joystick and LCD data displaying; particularly indicated for active and reactive energy metering
and for cost allocation. Housing for panel mounting with IP50 (front) protection degree. External Current and potential transformers connection. Moreover
the meter can be provided with digital outputs that can be used: for pulses proportional to the active and reactive energy being measured or for alarm outputs,
or for remote control. RS485 communication port and 3 digital inputs are available as an option.

Certified according to MID Directive, Annex "B" + Annex "D" for legal metrology relevant to active electrical energy meters (see Annex MI003 of MID). Can be used for fiscal (legal) metrology. Only the total positive energy meter is certified according to MID.

How to order EM2696 AV5 3H03SI PFA
Model
Range code
System
Power supply
Input/Output
Communication
Options
Measurement

Type Selection

Communication

XX:	none
S1:	RS485 port

Input/Output
01: single open collector type (pulse or alarm)
03: $\quad 3$ open collector type (mixed combination of pulse, alarm and/or remote output)
R2: dual relay type (functions as per "O3")
13: $\quad 3$ digital inputs for tariff selection or Gas/water/ energy/remote heating metering

NOTE: please check the availability of the needed code on the verification path diagram on left before order.

Options

PF: Certified according to MID Directive, Annex "B" + Annex "D" for legal metrology relevant to active electrical energy meters (see Annex MI-003 of MID). Can be used for fiscal (legal) metrology.

Measurement

A: \quad The power is always integrated (both in case of positive and negative power) and the total energy meter is certified according to MID.
B: \quad Only the total positive energy meter is certified according to MID. The negative energy meter is not certified according to MID.

STANDARD

Not certified according to MID directive. Cannot be used for fiscal (legal) metrology.

How to order EM2696 AV53HO3SI XX

Type Selection

Range codes		System	
AV5:	$230 \mathrm{~V}_{\mathrm{LN}} / 400 \mathrm{~V}_{\mathrm{LL}}$	3:	balanced and
	1/5(10)A		unbalanced load:
	$\mathrm{V}_{\text {LN }}$: 160 V to $480 \mathrm{~V}_{\text {LN }}$		3-phase, 4-wire;
	$\mathrm{V}_{\mathrm{LL}}: 277 \mathrm{~V}$ to $830 \mathrm{~V}_{\mathrm{LL}}$		3-phase, 3-wire;
AV6:	120 V LN/208V ${ }_{\text {LL }}$		2-phase, 3-wire;
	1/5(10)A		1-phase, 2-wire
	V_{LN} : 40 V to $144 \mathrm{~V}_{\text {LN }}$		
	$\mathrm{V}_{\mathrm{LL}}: 70 \mathrm{~V}$ to $250 \mathrm{~V}_{\mathrm{LL}}$		

| Power supply |
| :--- | :--- |
| H: \quad90 to $260 \mathrm{VAC} / D C$
 $(48$ to 62 Hz$)$ |
| |
| Communication |
| XX: \quad none |
| S1: \quad RS485 port |

Input/Output

01: single open collector type (pulse or alarm)
O3: 3 open collector type (mixed combination of pulse, alarm and/or remote output)
R2: dual relay type (functions as per "O3")
13: 3 digital inputs for tariff selection or Gas/water/ energy/remote heating metering

Options

XX: none

NOTE: please check the availability of the needed code on the verification path tables on left before order.

CARLO GAVAZZI

Input specifications

Rated inputs Current type	System type: 3	Max. and Min. indication	exceeding the "Continuous inputs overload" (maximum measurement capacity) Max. instantaneous variables: 9999; energies: 99999 999. Min. instantaneous variables: 0; energies 0.00
	Galvanic insulation by means of built-in CT's		
Current range (by CT) Voltage by direct connection or VT/PT	AV5 and AV6: 1/5(10)A		
	$\begin{aligned} & \text { AV5: } 230 \mathrm{~V}_{\mathrm{LN}} / 400 \mathrm{~V}_{\mathrm{LL}} ; \\ & \text { AV6: } 120 \mathrm{~V}_{\mathrm{LN}} / 208 \mathrm{~V}_{\mathrm{LL}} \\ & \hline \end{aligned}$		
Accuracy (Display + RS485)	lb : see below, Un: see below		
$\begin{aligned} & @ 25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{R} \cdot \mathrm{H} . \\ & 50 \pm \mathrm{Hz} / 60 \pm 5 \mathrm{~Hz}) \end{aligned}$		LEDs	Red LED (Energy consumption), according to
AV5 model	In: 5A, Imax: 10A; Un: 160 to 480 VLN (277 to 830 VLL)		EN50470-3, EN62052-11 $0.001 \mathrm{kWh} / \mathrm{kvarh}$ by pulse
AV6 model	In: 5A, Imax: 10A; Un: 40 to 144 VLN (70 to 250VLL)		if CT ratio by VT ratio is ≤ 7; $0.01 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if
Current AV5, AV6 models			CT ratio by VT ratio is >7.1
	From 0.002 In to 0.2 In : $\pm(0.5 \%$ RDG +3 DGT)		$\begin{aligned} & \leq 70.0 \text {; } \\ & 0.1 \mathrm{kWh} / \mathrm{kvarh} \text { pulse if CT } \end{aligned}$
	From 0.2 In to Imax: $\pm(0.5 \%$ RDG +1DGT).		ratio by VT ratio is $>70.1 \leq$ 700.0;
Phase-neutral voltage	In the range Un: $\pm(0,5 \%$ RDG + 1DGT)		$1 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if CT ratio by VT ratio is > 700.1;
Phase-phase voltage	In the range Un: \pm (1% RDG +1DGT)		1000 imp./kWh/kvarh. Max frequency: 16 Hz
Frequency Active and Apparent power Power Factor	$\pm 0.1 \mathrm{~Hz}(50 \pm 5 \mathrm{~Hz} / 60 \pm 5 \mathrm{~Hz})$	Measurements	See "List of the variables that can be connected to:" TRMS measurements of distorted wave forms. By means of external CT's
	$\pm(1 \% \mathrm{RDG}+2 \mathrm{DGT})$		
	$\begin{aligned} & \pm[0.001+1 \%(1.000-\text { "PF } \\ & \text { RDG")] } \end{aligned}$	Method	
Reactive power Active Energy	$\pm(2 \% \mathrm{RDG}+2 \mathrm{DGT})$ Class 1 according to EN62053-21; class B according to EN50470-3.	Coupling type	
		Crest factor	3 (15A max. peak)
		Current Overloads	
Reactive Energy	Class 2 according to EN62053-23	Continuous For 500 ms	$\begin{aligned} & \text { 10A, @ } 50 \mathrm{~Hz} \\ & 200 \mathrm{~A}, @ 50 \mathrm{~Hz} \end{aligned}$
AV5, AV6 models	In: 5A, Imax: 10A;$0.1 \mathrm{In}: 0.5 \mathrm{~A}$	Voltage Overloads	
		Continuous	1.2 Un
	Start up current: 10 mA	For 500 ms	
Harmonic distortion	THD up to 15 th harmonic $\pm 3 \%$ reading	$\begin{aligned} & \hline \text { Input impedance } \\ & \text { 208VL-L (AV6) } \\ & \text { 400VL-L (AV5) } \\ & \text { 1/5(10) A (AV5-AV6) } \end{aligned}$	$\begin{aligned} & >1 \mathrm{M} \Omega \\ & >1 \mathrm{M} \Omega \\ & <0.3 \mathrm{VA} \end{aligned}$
Energy additional errors Influence quantities	According to EN62053-21, EN62053-23		
		Frequency	$50 \pm 5 \mathrm{~Hz} / 60 \pm 5 \mathrm{~Hz}$
Temperature drift	s200ppm/ ${ }^{\circ} \mathrm{C}$	Joystick	For variable selection: programming of the instrument working parameters and Wdmd max reset
Sampling rate	1600 samples/s @ 50 Hz 1900 samples/s @ 60Hz		
Display refresh time	750 msec		
Display	$\begin{aligned} & 3 \text { lines }(1 \times 8 \text { DGT; } \\ & 2 \times 4 \text { DGT) } \end{aligned}$		
Type	LCD, h 9.5 mm , dual colour backlight (selectable)		
Instantaneous variables read-out Energies	4 DGT		
	Exported: Total		
	6+1DGT or 7DGT (with "-"		
	Imported: 6+2, 7+1 or		
Overload status	EEEE indication when the value being measured is		

CARLO GAVAZZI

Output specifications

Digital outputs	
Pulse type	
Number of outputs	Up to 3, independent.
	Programmable from 0.001
	to $10.00 \mathrm{kWh} / \mathrm{kvarh}$ per pulse.
Type	Outputs connectable to the
	energy meters (Wh/varh)
Pulse duration	Ton selectable (30 ms or
	100 ms) according to
	EN62053-31
	TofF: $\geq 120 \mathrm{~ms}$, according to
	EN62052-31
Alarm type	
Number of outputs	Up to 3, independent
Alarm modes	Up alarm, down alarm (see
	the table "List of the
	variables that can be
	connected to")
Set-point adjustment	From 0 to 100% of the display scale
Hysteresis	From 0 to full scale
On-time delay	0 to 255s
Output status	Selectable: normally
	de-energized or normally
Min. response time	700 ms , filters excluded.
	Set-point on-time delay: " 0 s "
Remote control	The digital ouputs status can
	be managed by means of
	serial communication RS485,
	if programmed as remote.
Note	The 3 digital outputs can
	also work as a triple pulse
	output, triple alarm output,
	or in any other combination.
Static output	
Physical outputs	Max. 3
Purpose	For pulse output, alarm
	output or remote control.
Signal	Von $1.2 \mathrm{VDC} / \mathrm{max} .100 \mathrm{~mA}$
	Voff 30 VDC max.
Insulation	By means of optocouplers,
	4000 VRMS output to
	measuring inputs,
	4000 VRMS output to
	power supply input.

Relay output

Physical outputs
Purpose

Type

Insulation

RS485

Type

Connections

Addresses
Protocol
Data (bidirectional)
Dynamic (reading only)

Static (reading and writing)

Data format

Baud-rate
Driver input capability

Insulation

Max. 2
For alarm output, pulse output or remote control. Relay, SPST type AC 1-5A @ 250VAC
DC 12-5A @ 24VDC
AC 15-1.5A @ 250VAC
DC 13-1.5A @ 24VDC 4000 VRMS outputs to measuring input. 4000 VRMS outputs to power supply input.

Multidrop, bidirectional (static and dynamic variables)
2-wire
Max. distance 1000m (without amplifier) Termination directly on the instrument
247, selectable by means of the front joystick MODBUS/JBUS (RTU)

System and phase variables: see table "List of variables..."
All the configuration parameters.
1 start bit, 8 data bit, no parity, 1 stop bit
4800, 9600 bits/s
$1 / 5$ unit load
Maximum 160 transceivers on the same bus, which can be expanded with signal amplifiers. By means of optocouplers, 4000 VRMS output to measuring input. 4000 VRMS output to power supply input

Digital input specifications

Number of inputs
Input frequency
Prescaler adjustment
Contact measuring voltage Contact measuring current Input impedance Contact resistance
3
20 Hz max, duty cycle 50%
From 0.001 to $999.9 \mathrm{~m}^{3}$ or
$\mathrm{kWh} /$ pulse
$5 \mathrm{VDC}+/-5 \%$
10 mA max
680Ω
$\leq 100 \Omega$, closed contact
$\geq 500 \mathrm{k} \Omega$, open contact

Working modes

> Selectable:
> - total and partial energy meters (kWh and kvarh) managed by time periods (t1-t2-t3-t4), W dmd synchronisation (the synchronisation is made every time the tariff changes) and GAS (m^{3}) or WATER (hot-cold m ${ }^{3}$) or

Digital input specifications (cont.)

remote heating (kWh) meters or external kWh meter;

- total and partial energy meters (kWh and kvarh) managed by time periods (t1-t2), W dmd synchronisation (the synchronisation is made independently of the tariff selection) and GAS (m^{3}) or WATER (hot-cold m^{3}) or remote heating (kWh) meters or external kWh meter;
- total energy (kWh, kvarh) and GAS, WATER (hot-cold m^{3}) and remote heating meters or external kWh meter, 3 choices only. The energy metering is only made by means of the analogue inputs. By means of optocouplers, 4000 VRMS digital inputs to measuring inputs. 4000 VRMS digital inputs to power supply input.

Software functions

Password	Numeric code of max. 4 digits; 2 protection levels of the programming data: 1st level		
Password "0", no protec-			
2nd level			

Software functions (cont.)

Easy connection function

> For all the display selections, both energy and power measurements are independent of the current direction. The displayed energy is always "imported" with the only exception of "F" and "H" types (see "display pages" table).

For these latter selections the energies can be either "imported" or "exported" depending on the current direction.

General specifications

Operating temperature	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $131^{\circ} \mathrm{F}$) (R.H. from 0 to 90% non-condensing @ $40^{\circ} \mathrm{C}$) according to EN62053-21 and EN62053-23	Immunity to conducted disturbances Surge	$10 \mathrm{~V} / \mathrm{m}$ from 150 KHz to 80 MHz On current and voltage measuring inputs circuit: 4 kV ; According to CISPR 22
Storage temperature	$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right. \text { to } \\ & \left.158^{\circ} \mathrm{F}\right)(\text { R.H. }<90 \% \text { non- } \end{aligned}$	Radio frequency suppression	
	condensing @ $40^{\circ} \mathrm{C}$) according to EN62053-21 and EN62053-23	Standard compliance Safety	IEC60664, IEC61010-1 EN60664, EN61010-1 EN62052-11 EN62053-21, EN50470-3, EN62053-23. DIN43864, IEC62053-31 CE, cULus listed, MID (PF option only)
Installation category	Cat. III (IEC60664, EN60664)	Metrology	
Insulation (for 1 minute)	4000 VRMS between measuring inputs and power supply. 4000 VRMS between power supply and RS485 digital outputs	Pulse output Approvals	
		Connections Cable cross-section area	Screw-type Max. $1.5 \mathrm{~mm}^{2}$
Dielectric strength	4000 VRMS for 1 minute	Housing	$96 \times 96 \times 63 \mathrm{~mm}$ ABS, self-extinguishing: UL 94 V-0 Panel mounting
Noise rejection CMRR	$100 \mathrm{~dB}, 48$ to 62 Hz	Dimensions (WxHxD) Material	
EMC Electrostatic discharges Immunity to irradiated	According to EN62052-11 15 kV air discharge; Test with current: $10 \mathrm{~V} / \mathrm{m}$ from 80 to 2000 MHz ; Test without any current: $30 \mathrm{~V} / \mathrm{m}$ from 80 to 2000MHz; On current and voltage measuring inputs circuit: 4kV		
		Mounting	
Electromagnetic fields		Protection degree Front Screw terminals	$\begin{aligned} & \text { IP50 } \\ & \text { IP20 } \\ & \hline \end{aligned}$
Burst		Weight	Approx. 400 g (packing included)

Power supply specifications

```
H: 90 to 260VAC/DC (48 to 62 Hz )
```

Power consumption
AC: 6VA
DC: 3.5 W

Accuracy (according to EN50470-3 and EN62053-23)

kWh, accuracy (RDG) depending on the current

kvarh, accuracy (RDG) depending on the current

——Accuracy limits (Reactive energy) Start-up current: 10 mA

MID "Annex MI-003" compliance (PF option only)

Accuracy AV5-AV6 models	$0.9 U n \leq U \leq 1.1 U n ;$ $0.98 \mathrm{fn} \leq \mathrm{f} \leq 1.02 \mathrm{fn}$; fn: 50 Hz ; cosj: 0.5 inductive to 0.8 capacitive. Class B. I st: 0.01A; I min: 0.05A; I tr: 0.25A; I n: 5A; 1 max: 10A
Operating temperature	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $131^{\circ} \mathrm{F}$) (R.H. from 0 to 90% non-condensing @ $40^{\circ} \mathrm{C}$)

EMC compliance	E2
Mechanical compliance	M2
Protection degree	in order to achieve the protection against dust and water required by the norms harmonized to MID, the meter must be used only installed in IP51 (or better) cabinets.

Used calculation formulas

Phase variables
Instantaneous effective voltage

$$
V_{1 N}=\sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n}\left(V_{1 N}\right)_{i}^{2}}
$$

Instantaneous active power

$$
W_{1}=\frac{1}{n} \cdot \sum_{i=1}^{n}\left(V_{1 N}\right)_{i} \cdot\left(A_{1}\right)_{i}
$$

Instantaneous power factor

$$
\mathrm{PF}=\frac{W_{1}}{V A_{1}}
$$

Instantaneous effective current

$$
A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n}\left(A_{1}\right)_{i}^{2}}
$$

Instantaneous apparent power

$$
V A_{1}=V_{1 N} \cdot A_{1}
$$

Instantaneous reactive power

$$
\operatorname{var}_{1}=\sqrt{\left(V A_{1}\right)^{2}-\left(W_{1}\right)^{2}}
$$

Where: $\mathbf{n}=$ sample number

System variables

Equivalent three-phase voltage

$$
V_{\Sigma}=\frac{V_{1}+V_{2}+V_{3}}{3}
$$

Three-phase reactive power

$$
\operatorname{var}_{\Sigma}=\left(\operatorname{var}_{1}+\operatorname{var}_{2}+\operatorname{var}_{3}\right)
$$

Three-phase active power

$$
W_{\Sigma}=W_{1}+W_{2}+W_{3}
$$

Three-phase apparent power

$$
V A_{\Sigma}=\sqrt{W_{\Sigma}^{2}+\operatorname{var}_{\Sigma}^{2}}
$$

Three-phase power factor

$$
\cos \varphi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}
$$

Energy metering

$$
\begin{aligned}
& k W h_{1}=\int_{t 1}^{t 2} P_{1}(t) d t \cong \Delta t \sum_{j=n 1}^{n 2} P_{1}(j) \\
& k \operatorname{var} h_{1}=\int_{t 1}^{t 2} Q_{1}(t) d t \cong \Delta t \sum_{j=n 1}^{n 2} Q_{1}(j)
\end{aligned}
$$

Where:
$\mathbf{P}=$ active power;
$\mathbf{Q}=$ reactive power;
$\mathbf{t}_{1}, \mathbf{t}_{\mathbf{2}}=$ starting and ending time points of consumption recording; $\mathbf{n j}=$ time unit;
$\mathbf{t}=$ time interval between two successive power consumptions;
$\mathbf{n}_{\mathbf{1}}, \mathbf{n}_{\mathbf{2}}=$ starting and ending discrete time points of consumption recording

List of the variables that can be connected to:

- RS485 communication port
- Alarm outputs ("max" variable", "energies" and "hour counter" excluded)
- Pulse outputs (only positive "energies")

No	Variable	1-phase system	2-phase system	3-ph. 4-wire balanced sys.	3-ph. 4-wire unbal. sys.	3 ph. 3-wire bal. sys.	3 ph. 3-wire unbal. sys.	Notes
1	V L-N sys		x	X	x	x	X	sys=system
2	V L1	X	X	X	X	X	X	
3	V L2	0	X	X	X	X	X	
4	V L3	0	0	X	X	X	X	
5	V L-L sys	0	X	X	X	X	X	sys=system
6	V L1-2	0	X	X	X	X	X	
7	V L2-3	0	0	X	X	X	X	
8	V L3-1	0	0	X	X	X	X	
9	A dmd max		X	X	X	X	X	Highest "dmd" current among the phases (1)
10	A L1	X	X	X	X	X	X	
11	A L2	0	X	X	X	X	X	
12	A L3	0	0	X	X	X	X	
13	VA sys	X	X	X	X	X	X	sys=system
14	VA sys dmd	X	X	X	X	X	X	sys=system (1)
15	VA L1	X	X	X	X	X	X	
16	VA L2	0	X	X	X	X	X	
17	VA L3	0	0	X	X	X	X	
18	var sys	X	X	X	X	X	X	sys=system
19	var L1	X	X	X	X	X	X	
20	var L2	0	X	X	X	X	X	
21	var L3	0	0	X	X	X	X	
22	W sys	X	X	X	X	X	X	sys=system
23	W sys dmd	X	X	X	X	X	X	sys=system (1)
24	W L1	X	X	X	X	X	X	
25	W L2	0	X	X	X	X	X	
26	W L3	0	0	X	X	X	X	
27	PF sys	X	X	X	X	X	X	
28	PF L1	X	X	X	X	X	X	
29	PF L2	0	X	X	X	X	X	
30	PF L3	0	0	X	X	X	X	
31	Hz	X	X	X	X	X	X	
32	Phase seq.	0	0	X	X	X	X	
33	Hours	X	X	X	X	X	X	
34	kWh (+)	X	X	X	X	X	X	Total or by user
35	kvarh (+)	X	X	X	X	X	X	Total or by user
36	kWh (+)	X	X	X	X	X	X	Partial or by tariff
37	kvarh (+)	X	X	X	X	X	X	Partial or by tariff
38	kWh (-)	X	X	X	X	X	X	Total
39	kvarh (-)	X	X	X	X	X	X	Total
40	m^{3} Gas	X	X	X	X	X	X	Total
41	m^{3} Cold $\mathrm{H}_{2} \mathrm{O}$	X	X	X	X	X	X	Total
42	$\mathrm{m}^{3} \mathrm{Hot} \mathrm{H}_{2} \mathrm{O}$	X	X	X	X	X	X	Total
43	kWh H2O	X	X	X	X	X	X	Total
44	kWh out	X	X	X	X	X	X	Total
45	A L1 THD	X	X	X	X	X	X	
46	A L2 THD	0	X	X	X	X	X	
47	A L3 THD	0	0	X	X	X	X	
48	V L1 THD	X	X	X	X	X	X	
49	V L2 THD	0	X	X	X	X	X	
50	V L3 THD	0	0	X	X	X	X	
51	V L1-2 THD	X	X	X	X	X	X	
52	V L2-3 THD	0	X	X	X	X	X	
53	V L3-1 THD	0	0	X	X	X	X	

$(x)=$ available; (o) = not available (zero indication on the display); (1) Max. value with data storage.

Display pages

Sel. pos.	No	1st variable (1st line)	2nd variable (2nd line)	3rd variable (3rd line)	Note	Applications							
						A	B	C	D	E	F	G	H
	1	Total kWh (+)	W sys dmd	W sys dmd max		x	x	x		x	x	x	X
	2	kWh (+)	A dmd max	"PArt"	"PArt" = Partial kWh (+)						x	x	x
	3	Total kvarh (+)	VA sys dmd	VA sys dmd max			x	x			x	x	x
	4	kvarh (+)	VA sys	"PArt"	"PArt" = Partial kvarh (+)						x	x	x
	5	Totalizer 1 (2)	W sys	(text) (3)	(1)			x			x	x	x
	6	Totalizer 2 (2)	W sys	(text) (3)	(1)			x			x	x	x
	7	Totalizer 3 (2)	W sys	(text) (3)	(1)			x			x	x	x
	8	kWh (+)	t1 (text) (4)	W sys dmd	(1) digital input enabled			x			x	x	X
	9	kWh (+)	t2 (text) (4)	W sys dmd	(1) digital input enabled			x			x	x	X
	10	kWh (+)	t3 (text) (4)	W sys dmd	(1) digital input enabled			x			x	x	X
	11	kWh (+)	t4 (text) (4)	W sys dmd	(1) digital input enebled			x			x	x	X
	12	kvarh (+)	t1 (text) (4)	W sys dmd	(1) digital input enabled			x			x	x	X
	13	kvarh (+)	t2 (text) (4)	W sys dmd	(1) digital input enabled			x			X	x	x
	14	kvarh (+)	t3 (text) (4)	W sys dmd	(1) digital input enabled			x			x	x	X
	15	kvarh (+)	t4 (text) (4)	W sys dmd	(1) digital input enabled			x			X	x	x
	16	kWh (+) X	W X	User X	(1) specific function enabled				x				
	17	kWh (+) Y	W Y	User Y	(1) specific function enabled				x				
	18	kWh (+) Z	W Z	User Z	(1) specific function enabled				x				
	19	Total kvarh (-)	VA sys dmd	VA sys dmd max							X		x
	20	Total kWh (-)	W sys dmd	W sys dmd max						x	x		X
	21	Hours	W sys	PF sys						x	X	x	X
	22	Hours	var sys	PF sys						x	x	x	X
	23	W L1	W L2	W L3						x		x	X
	24	VA L1	VA L2	VA L3								x	x
	25	var L1	var L2	var L3								x	X
	26	PF L1	PF L2	PF L3								x	x
	27	V L1	V L2	V L3			x		x	x		x	x
	28	V L1-2	V L2-3	V L3-1								X	x
	29	A L1	A L2	A L3						x		x	X
	30	Phase seq.	V LN sys	Hz		x	x	x		x	x	x	X
	31	Phase seq.	V LL sys	Hz							x	x	X
	32	ASY	V LL sys	\%							x	x	X
	33	ASY	V LN sys	\%							X	x	X
	34	THD A1	THD A2	THD A3								x	x
	35	THD V1	THD V2	THD V3								x	x
	36	THD V12	THD V23	THD V 31								x	x
	37	Lot number	Year	DMD time		x	x	x	x	x	x	x	x
	38	CT ratio	Value of CT	System		x	x	x	x	x	x	x	x
	39	VT/PT ratio	Value of VT	Connection		x	x	x	X	x	x	x	x
	40 a	Alarm 1 status	Set-point value	Variable type				x		x		x	X
	41 a	Alarm 2 status	Set-point value	Variable type				x		x		x	x
	42 a	Alarm 3 status	Set-point value	Variable type				x		x		x	X
	40 b	Pulse 1 status	Output pulse			x	x	x	x	x	x	x	x
	41 b	Pulse 2 status	Output pulse			x	x	x	x	x	x	x	x
	42 b	Pulse 3 status	Output pulse			x	x	x	X	x	x	x	x
	43	Serial port	Address	RS485 status		x	x	x	x	x	x	x	x
0	Selector position which can be linked to any of the variable combinations listed above (No. from 1 to 36)												
1	Selector position which can be linked to any of the variable combinations listed above (No. from 1 to 36)												
2	Selector position which can be linked to any of the variable combinations listed above (No. from 1 to 36)												
3	Selector position which can be linked to any of the variable combinations listed above (No. from 1 to 36). In this position the front LED blinks proportionally to the reactive energy (kvarh) being measured												

(1) The page is available according to the enabled measurement. (2) m^{3} Gas, m^{3} Water, kWh remote heating, external kWh counter. (3) Hot or Cold (water), gas, ENE (external energy meter). (4) The active tariff is displayed with an " A " before the " t 1 -t2-t3-t4" simbols.

Additional available information on the display

Type	1st line	2nd line	3rd line
Meter information pag. 1	Firmware release	Year	Year of production
Meter information pag. 2	Pulse	LED	Value
Meter information pag. 3	System	2w, 3w or 4w	
Meter information pag. 4	CT ratio	Value of CT ratio	
Meter information pag. 5	PT ratio	Value of PT ratio	
In case of alarm output pag.6a	Alarm output 1, 2 or 3 status (ON/OFF)	Set-point value	
In case of pulse output pag. 6b	Pulse output 1,2 or 3 variable link (kWh/kvarh)	Output pulse weight (kWh/kvarh per pulse)	Variable type
In case of communication port pag.7	Serial port	Address	RS485 status (RX-TX)
In case of communication port pag.8	Secondary address (for M-bus protocol)	Sn	

List of selectable applications

	Description	Notes
\mathbf{A}	Basic domestic **	Main energy metering
\mathbf{B}	Shopping centres **	Main energy metering
\mathbf{C}	Advanced domestic**	Main energy metering (total and based on tariff), gas and water metering
\mathbf{D}	Multi domestic (also camping and marinas) */**	Main energy metering (3 by single phase)
\mathbf{E}	Solar *	Energy meter with some basic power analyzer functions
\mathbf{F}	Industrial *	Main energy metering
\mathbf{G}	Advanced industrial **	Energy metering and power analysis
\mathbf{H}	Advanced industrial for power generation *	Complete energy metering and power analysis

Notes: * Not available with option PF A. ** Not available with option PF B

Insulation between inputs and outputs

	Measuring Inputs	Relay output	Open collector outputs	Comm. port	Digital inputs	Auxiliary power sup-
Measuring Inputs	-	4 kV				
Relay output	4 kV	-	-	4 kV	-	4 kV
Open collector outputs	4 kV	-	-	4 kV	-	4 kV
Comm. port	4 kV	4 kV	4 kV	-	4 kV	4 kV
Digital inputs	4 kV	-	-	4 kV	-	4 kV
Aux. power sup-	4 kV					

NOTE: all the models with auxiliary power supply have, mandatory, to be connected to external current transformers because the insulation among the current inputs is just functional (100VAC).

Tamper proof and display page selection

Lock of programming with seal. Selection of up to 4 main pages (programmable by the user).

Easy access to specific display pages.

Wiring diagrams

System type selection: 3P.n

System type selection: 3P.n
3-ph, 3-wire, unbalanced load Fig. 3
3-ph, 3-wire, unbalanced load Fig. 4

System type selection: 3P. 1

Wiring diagrams

System type selection: 2P

System type selection: 1P

System type selection: 1P

Auxiliary power supply wiring diagrams
100 to 230VAC/DC ("H" option) Fig. 13

Digital inputs and RS485 port wiring diagrams

RS485 port

RS485 NOTE: additional devices provided with RS485 are connected in parallel. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between (A-) and (T).

Open collector and relay outputs wiring diagrams

The load resistances (RC) must be designed so that the close contact current is lower than 100 mA ; the VDC voltage must be lower than or equal to 30VDC.

Front panel description

1. Display

LCD-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

2. Selector

To select the desired display pages and to lock the programming.
3. Joystick

To program the configuration parameters and scroll the variables on the display.
4. LED

Red LED blinking proportionally to the energy being measured.

Dimensions and Panel Cut-out

