
Dreiphasige Universal-Sanftstartgeräte Typ RSGD

- Sanftstart und Sanftstopp dreiphasiger K\u00e4figl\u00e4ufermotoren
- IP20-Gehäuse mit einer Breite von 45 mm
- Betriebsspannung: RSGD40 (220-400 V), RSGD60 (220-600 V)
- Betriebsstrom: bis zu 45 A AC53-b
- · 2-phasig geregelt
- Integrierte Kurzschlussrelais
- Interne Stromversorgung1
- CE-, RoHS-konform
- cULus, CCC (beantragt)
- Optionale Relaisausgänge für Alarm- und Kurzschlussanzeige
- Optionaler Lüfter zur Erhöhung der Anzahl von Startvorgängen pro Stunde

Produktbeschreibung

Die RSGD-Serie ist ein extrem kompaktes und benutzerfreundliches 3phasiges Sanftstartgerät Wechselstrom-Asynchronmotoren. Das RSGD bietet Nennströme von bis zu 45 AAC und wird in einem IP20-Gehäuse mit einer Breite von 45 mm geliefert, welches für die Montage auf DIN-Hutschienen sowie in Schalttafeln geeignet ist. Das RSGD regelt zwei Phasen und ist intern überbrückt, um die Wärmeentwicklung innerhalb der Schalttafel zu minimieren. Darüber hinaus ist die Serie für bis zu 400 V (RSGD40..) mit einer internen Stromversorgung ausgestattet.

Dank eines Mikrocontroller-basierten Algorithmus erreicht das RSGD eine außergewöhnliche Reduzierung des Einschaltstoßstroms, wodurch der Start- und Stoppvorgang von Motoren wesentlich sanfter verläuft. Mithilfe dreier Regler am Bedienfeld können die Startparameter ganz einfach eingestellt

werden, und es stehen LED-Anzeigen zur Anzeige von Versorgungsspannung, Alarmzuständen und Anlauf- bzw. Überbrückungsstatus zur Verfügung. Das RSGD ist mit verschiedenen Diagnosefunktionen ausgestattet, darunter Phasenreihenfolge, Überwachung auf Über- und Unterspannung sowie Schutz gegen Rotorblockage.

Zusätzlich können optionale Relais zur Anzeige von Alarmzuständen und Überbrückung angeschlossen werden. Um eine höhere Anzahl von Startvorgängen pro Stunde zu ermöglichen, können die 37-A-Ausführung und die 45-Ausführung des RSGD mit einem Lüfter ausgestattet werden, der als Zubehör erhältlich ist.

Kurzschluß- und Überlastschutz sind nicht im Softstarter integriert. Sie müssen separat installiert werden.

Bestellcode

RSG D 40 16 E 0 VD00

Universal-Sanftstartgerät — Geregelte Phasen	
Betriebsspannung —	
Nennbetriebsstrom —	
Steuerspannung —	
Versorgungsspannung —————	
Gehäuse —	
Optionen — — — — — — — — — — — — — — — — — —	_

Typauswahl

Тур	Betriebsspannung Ue	Nennbetriebsstrom le @ 40°C	Steuerspannung Uc	Versorgungs- spannung Us	Version
RSGD:	40: 220 – 400 VAC	12: 12 Arms	E ¹ : 110 – 400 VAC	01: Interne	V.00: Keine
Universal-	+10% -15%	16: 16 Arms	+10% -15%	Stromversorgung	Zusatzoptionen
Sanftstartgerät	60: 220 – 600 VAC	25: 25 Arms	F1: 24VAC/DC	G ² : 100 – 240VAC	V.20: 2 Relaisausgänge
	+10% -15%	32: 32 Arms	+10% -10%	+10% -15%	(Alarm, Überbrückung)
		37: 37 Arms 45: 45 Arms	G ² : 100 – 240VAC		

Typenwahl

Operational	Steuer-	Version			Nennbetrieb	sstrom		
Voltage Ue	spannung Uc	;	12 A _{rms}	16 A _{rms}	25 A _{rms}	32 A _{rms}	37 A _{rms}	45 A _{rms}
220 - 400	24 VAC/DC	Kein Relaisausgang	RSGD4012F0VD00	RSGD4016F0VD00	RSGD4025F0VD00	RSGD4032F0VD00	RSGD4037F0VX00	RSGD4045F0VX00
VAC		2 Relaisausgänge	RSGD4012F0VD20	RSGD4016F0VD20	RSGD4025F0VD20	RSGD4032F0VD20	RSGD4037F0VX20	RSGD4045F0VX20
	110 - 400	Kein Relaisausgang	RSGD4012E0VD00	RSGD4016E0VD00	RSGD4025E0VD00	RSGD4032E0VD00	RSGD4037E0VX00	RSGD4045E0VX00
	VAC	2 Relaisausgänge	RSGD4012E0VD20	RSGD4016E0VD20	RSGD4025E0VD20	RSGD4032E0VD20	RSGD4037E0VX20	RSGD4045E0VX20
220 - 600 VAC	100 - 240 VAC	2 Relaisausgänge	RSGD6012GGVD20	RSGD6016GGVD20	RSGD6025GGVD20	RSGD6032GGVD20	RSGD6037GGVX20	RSGD6045GGVX20

- 1. Gilt nur für RSGD-40-Modelle.
- 2. Gilt nur für RSGD-60-Modelle.

Allgemeine technische Daten

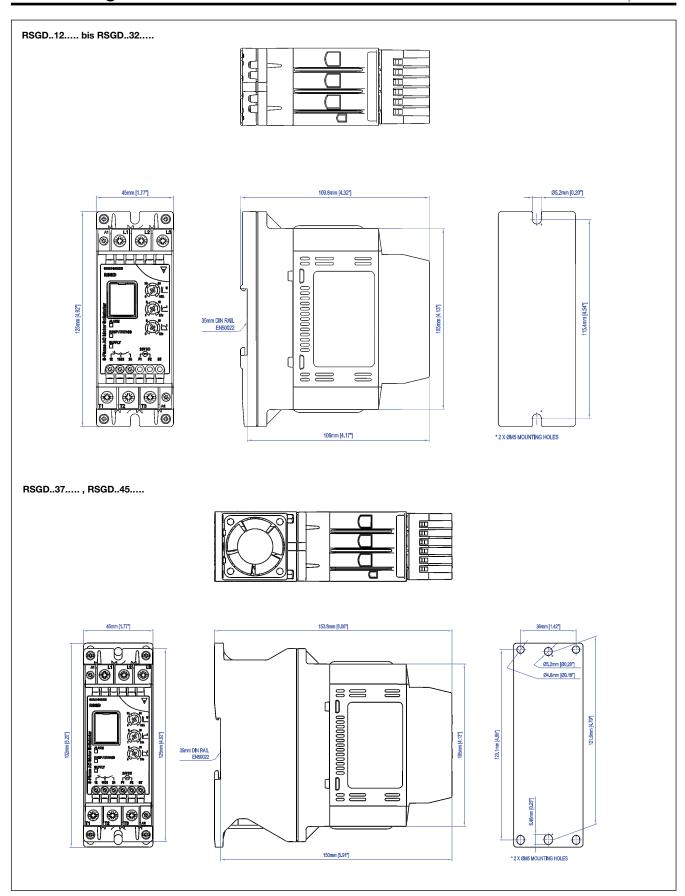
Anlaufzeit	120s	LED-Statusanzeigen	
Auslaufzeit	020s	Betriebsspannung EIN	grüne LED
Anfangsspannung	085%	Anlauf/Überbrückung	gelbe LED
Erholung von		Alarm	rote LED
Unterspannung/Überspannung		Formbezeichnung	1
RSGD40: Unterspannung	174VAC	Vibration	gemäß IEC60068-2-26
RSGD40: Überspannung	466VAC	Frequenz 1	2 [+3/-0]Hz bis 25Hz
RSGD60: Unterspannung	174VAC		Auslenkung +/- 1.6mm
RSGD60: Überspannung	700VAC	Frequenz 1	25Hz bis 100Hz @ 2g (19.96m/s²)

Technische Daten des Eingangs

	RSGD40E0V	RSGD40F0V	RSGD60GGV	
Steuerspannung Uc	A1 – A2: 110 – 400 VAC	A1 – A2: 24VAC/DC	ST: 100 - 240VAC	
-	+10%, -15%	+10%, -10%	+10%, -15%	
Steuerspannungsbereich Uc	93.5 – 440 VAC	21.6 – 26.4 VAC/DC	85 – 264 VAC	
Max. Einschaltspannung	80VAC	20.4 VAC/DC	80VAC	
Min. Ausschaltspannung	20VAC	5 VAC/DC	20VAC	
Versorgungsspannung Us	-	-	A1 - A2: 100 - 240VAC	
			+10%, -15%	
Nennfrequenz AC	45 – 66 Hz	45 – 66 Hz (gilt nur bei Versorgung mit 24 VAC)	45 – 66 Hz	
Nenn-Isolationsspannung Ui	500 VAC			
Überspannungskategorie	III			
Durchschlagsfestigkeit				
Durchschlagsspannung		2 kVrms		
Nennstoßstehspannung	4 kVrms			
Eingangsstrom Steuereingang	0.55mA		0.43mA	
Reaktionszeit Eingang zu Ausgang	< 300 msec			
Integrierter Varistor	Ja			

^{*} Hinweis 1: Bei Einsatz in Kanada müssen die Steueranschlüsse A1, A2 der RSGD-Geräte (bzw. A1, A2 und ST bei den RSGD60-Versionen) aus einem Sekundärkreis gespeist werden, dessen Leistung durch einen Transformator, Gleichrichter, Spannungsteiler oder ein ähnliches Bauteil begrenzt wird, welches die Leistung aus dem Primärkreis ableitet, und bei dem die Kurzschlussbegrenzung zwischen den Leitern des Sekundärkreises oder zwischen den Leitern und der Erde 1.500 VA oder weniger beträgt. Der Voltampere-Kurzschlussgrenzwert ist das Produkt aus der Leerlaufspannung und dem Kurzschlussstrom.

Hinweis 2: Für die RSGD60..-Sanftstartgeräte wird eine separate, einphasige Steuerquelle mit 100–240 V, 50/60 Hz benötigt. Die Lastanschlüsse (L1, L2, L3, T1, T2, T3) sind nicht galvanisch von den Anschlüssen der externen Stromversorgung (A1, A2, ST) getrennt.


Technische Daten des Ausgangs

	RSGD12	RSGD16	RSGD25	RSGD32	RSGD37	RSGD45
Überlast-Schaltspiel gemäß EN/IEC 60947-4-2 @ 40 °C Umgebungstemperatur		AC53b:3-5:175		AC53b:4	1- <u>6:</u> 354	AC53b:3.5-5:355
Maximale Anzahl Startvorgänge pro Stunde						
@ 40 °C (ohne Lüfter) @ Nenn-Überlast-Schaltspiel	20	20	20	10	10	10
Maximale Anzahl Startvorgänge pro Stunde						
@ 40 °C (mit Lüfter) @ Nenn-Überlast-Schaltspiel	-	-	-	-	15	15
Nennbetriebsstrom @ 40 °C	12 AAC	16 AAC	25 AAC	32 AAC	37 AAC	45 AAC
Nennbetriebsstrom @ 50 °C	11 AAC	15 AAC	23 AAC	28 AAC	34 AAC	40 AAC
Nennbetriebsstrom @ 60 °C	10 AAC	13.5 AAC	21 AAC	24 AAC	31 AAC	34 AAC
Minimaler Laststrom	1 AAC			5,	AAC .	

Hinweis: Das Überlast-Schaltspiel gibt die Schaltkapazität des Sanftstartgeräts bei einer Umgebungstemperatur von 40 °C wie in EN/IEC 60947-4-2 beschrieben an. Ein Überlast-Schaltspiel von AC53b:4-6:354 bedeutet, dass das Sanftstartgerät einem Anlaufstrom von 4 × le für einen Zeitraum von 6 Sekunden widersteht, wenn darauf eine Ausschaltdauer (AUS) von 354 Sekunden folgt.

Abmessungen

Umgebungsbedingungen

Betriebstemperatur	-20°C bis +60°C (-4°F bis +140°F) und NormenHinweis: Bei Betriebs- temperaturen >40 °C tritt ein Derating auf.
Lagertemperatur	-40°C bis +80°C (-40°F bis 176°F)
Relative Luftfeuchtigkeit	< 95% nicht-kondensierend bei 40°C

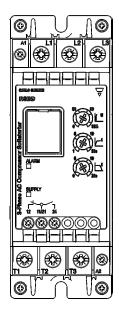
Verschmutzungsgrad	2
Schutzart	IP20 (EN/IEC 60529)
Einsatzklasse	III
Höhe Einbauort	1000 m

Technische Daten der Stromversorgung

	RSGD40	RSGD60	
Betriebsspannungsbereich	187 – 440 VACrms	187 – 660 VACrms	
Vorsorgungsstrom im Leerlauf	< 30 mAAC	< 30 mAAC	
Sperrspannung	1200 Vp	1600 Vp	
Nennfrequenz AC	50/60 Hz +/-10%		
Nennisolationsspannung	630 VAC	690 VAC	
Durchschlagsfestigkeit	_		
Durchschlagsspannung			
Versorgungsanschluss gegen Eingang	2.5 kVrms		
Versorgungsanschluss gegen Kühlkörper	2.5 kVrms		
Integrierter Varistor	Ja (zwischen geregelten Phasen)		

Anschlusseigenschaften

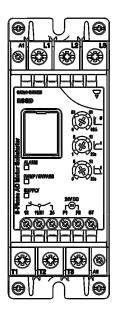
Netzleiter: L1, L2, L3. T1, T2, T3 nach EN60947-1	
flexibel	2.5 10 mm ² 2.5 2 x 4 mm ²
starr (massiv oder Litze) flexibel mit Aderendhülse	2.5 10 mm ² 2.5 10 mm ²
UL/CSA-Nenndaten Starr (Litze) Starr (massiv) Starr (massiv oder Litze)	AWG 614 AWG 1014 AWG 2 x 102 x 14
Anschlußtype	6 x M4
Schutzleiteranschluss Posidrive bit	2.5 Nm (22 lb.in) mit 2
Abisiolierlänge	8.0 mm
Hilfsleiter:	
A1, A2	
nach EN60998	
flexibel	0.5 1.5 mm ²
starr (massiv oder Litze)	0.5 2.5 mm ²
flexibel mit Aderendhülse	0.5 1.5 mm ²
UL/CSA-Nenndaten	ANA 40 40
starr (massiv oder Litze)	AWG 1018
Anschlußtype	9 x M3
Schutzleiteranschluss	0.6Nm (5.3lb.in) mit Posidrive bit 0
Abisiolierlänge	6.0 mm


Auxiliary conductors 11, 12, 21, 24, ST, F1, F2 starr (massiv oder Litze) flexibel mit Aderendhülse	0.05 2.5mm ² 0.05 1.5mm ²
UL/CSA-Nenndaten 11, 12, 21, 24, ST, F1, F2 starr (massiv oder Litze)	AWG 30 12 AWG 24 12
Anschlußtype 11, 12, 21, 24, ST, F1, F2	M3
Schutzleiteranschluss 11, 12, 21, 24, ST, F1, F2	0.45 Nm (4.0 lb.in)
Abisiolierlänge	6 mm

75-°C-Kupferleiter (Cu) verwenden

Anschlussmarkierungen

RSGD40....VD00 RSGD40....VD20 RSGD40....VX00 RSGD40....VX20



L1, L2, L3:NetzanschlussT1, T2, T3:LastanschlussA1, A2:Versorgungsspannung11, 12:Alarmanzeige (Öffner, NC)

21, 24: Anzeige für Anlauf abgeschlossen (Schließer, NO)
F1, F2: 24-VDC-Anschluss zur Versorgung des Lüfters

Hinweis: Bei Nutzung der 24-VDC-Option muss A1 mit dem positiven (+) und A2 mit dem negativen (-) Anschluss verbunden werden.

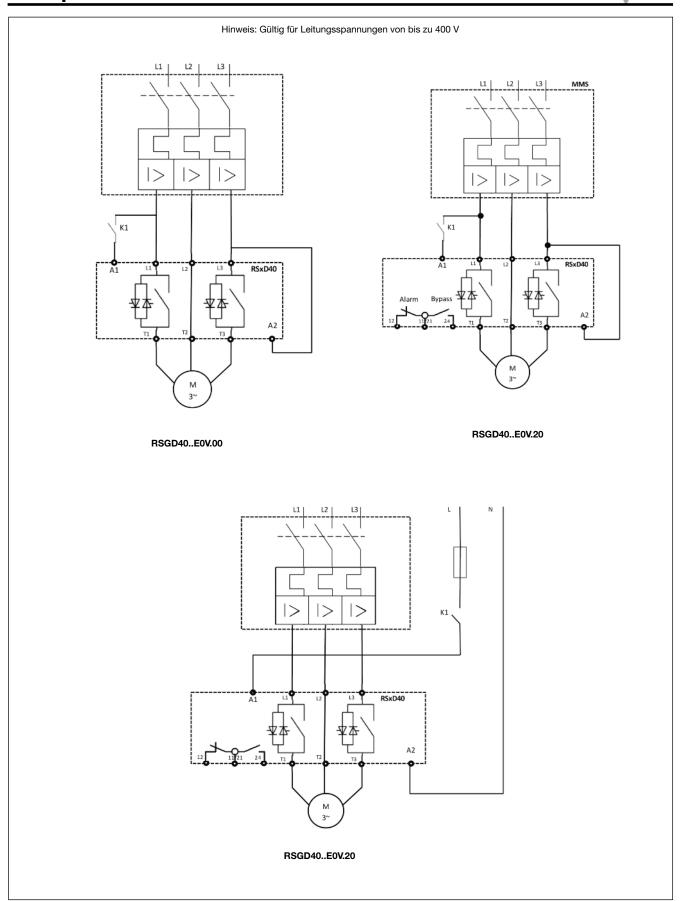
RSGD60....VD00, RSGD60....V.20

L1, L2, L3: Netzanschluss
T1, T2, T3: Lastanschluss
A1, A2: Versorgungsspannung
ST: Steuerspannung
11, 12: Alarmanzeige (Öffner, NC)

21, 24: Anzeige für Anlauf abgeschlossen (Schließer, NO) **F1, F2:** 24-VDC-Anschluss zur Versorgung des Lüfters

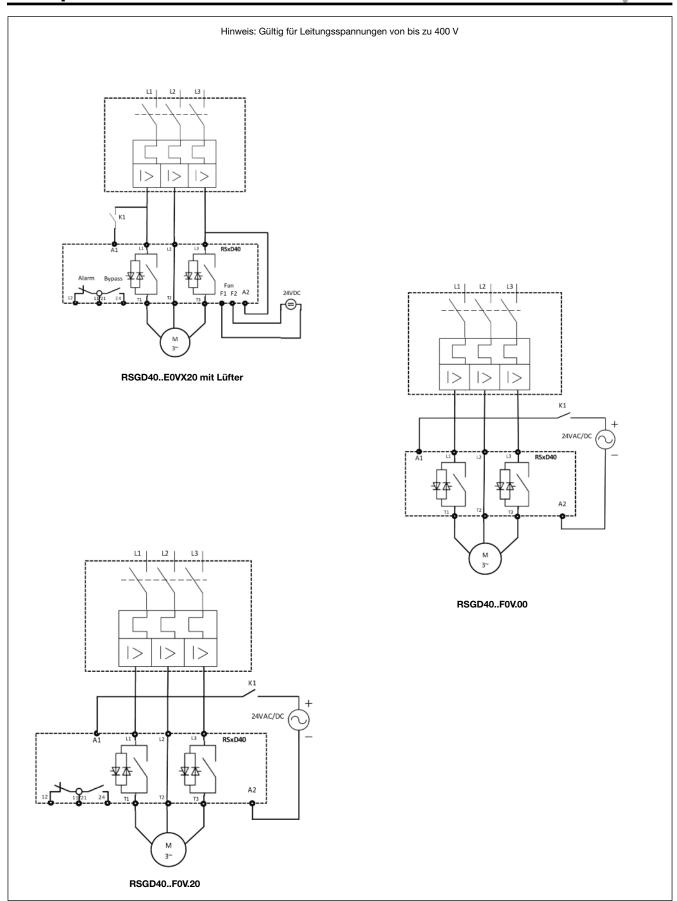
Technische Daten des Gehäuses

Gewicht (circa)	
RSGD12VD RSGD32VD	475g
RSGD37VX RSGD45VX	670g
Material	PA66
Materialfarbe	RAL7035
Farbe der Anschlussleiste	RAL7040
Befestigung	DIN oder Schalttafel

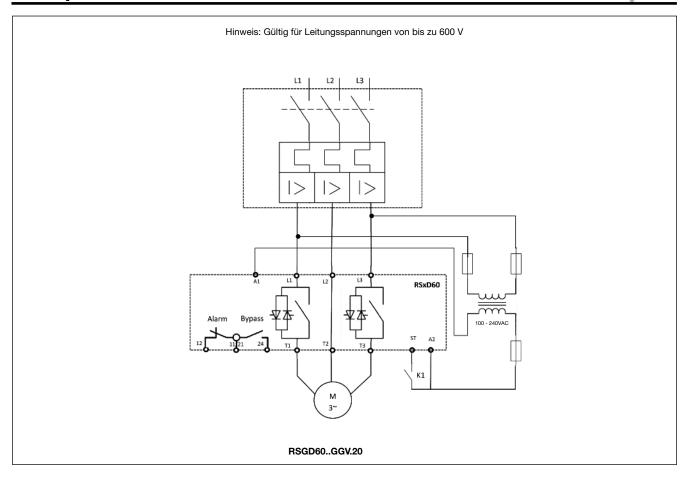

Hilfsrelais

Belastbarkeit der Hilfsrelaiskontakte Alarm (11,12) Überbrückt (21,24)

3A, 250 VAC/ 3A, 30VDC Öffner (NC) Schließer (NO)



Schaltpläne


Schaltpläne

7

Schaltpläne

Elektromagnetische Verträglichkeit (EMV)

EMV Störfestigkeit	IEC/EN 61000-6-2	Störfestigkeit gegen hochfre-		
Störanfälligkeit gegen die Ent- ladung statischer Elektrizität	EC/EN 61000-4-2	quente elektromagnet. Felder 3V/m, 80 - 1000 MHz	IEC/EN 61000-4-3 Leistungskriterien 1	
Luftentladung: 8kV Kontakt: 4kV	Leistungskriterien 2 Leistungskriterien2	Leitungsgeführte Hochfrequenz Störfestigkeit 10V/m, 0.15 - 80 MHz	IEC/EN 61000-4-6 Leistungskriterien 1	
Störfestigkeit gegen schnelle transiente elektrische Störgrößen/ BURST Lastkreis: 2kV Steuerkreis: 1kV	IEC/EN 61000-4-4 Leistungskriterien 2 Leistungskriterien 2	Störfestigkeit gegen Spannungseinbrüche 0%, 10ms/20ms, 40%, 200ms 70%, 500ms	IEC/EN 61000-4-11 Leistungskriterien 2 Leistungskriterien 2 Leistungskriterien 2	
Störfestigkeit gegen Störspannungen Lastkreis, Leitung auf Leitung Lastkreis, Leitung an Erde Steuerkreis, Leitung auf Leitung Steuerkreis, Leitung an Erde	IEC/EN 61000-4-5 1 kV, Leistungskriterien 2 2 kV, Leistungskriterien 2 1 kV, Leistungskriterien 2 2 kV, Leistungskriterien 2	Emission Funkstörfeldemissionen (abgestrahlt) 30 - 1000MHz Störfestigkeit gegen Spannungseinbrüche	IEC/EN 61000-6-3 IEC/EN 55011 Class A (Industrial) IEC/EN 55011 Class A (Industrial)	

Konformität und Normen

Konformität EN/IEC 60947-4-2 UL508 Listed (E172877) cUL Listed (E172877)

CCC (pending)

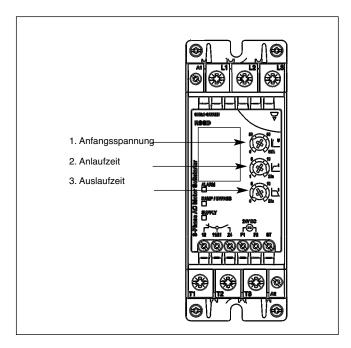
Einstellvorgang für das Sanftstartgerät

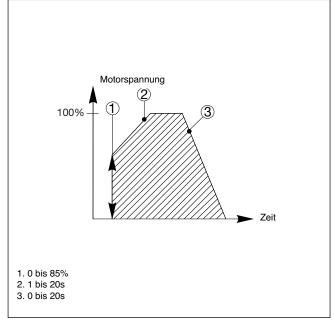
Das RSGD-Sanftstartgerät verfügt über drei unabhängige Einstellregler, mit denen die Anfangsspannung (0–85 %), die Anlaufzeit (1–20 s) und die Auslaufzeit (0–20 s) festgelegt werden können. Wir empfehlen, beim Anpassen der Parameter an die jeweilige Anwendung folgendermaßen vorzugehen:

Schritt 1 – Anfangsspannung einstellen

• Legen Sie den Wert für die Anfangsspannung so fest, dass sich der Motor unmittelbar beim Anlegen des Steuersignals in Bewegung setzt, wenn für die Anlaufzeit eine Zeitdauer von 10 Sekunden eingestellt ist.

- Falls ein niedrigerer Anlaufstrom benötigt wird, muss für die Anfangsspannung ein niedrigerer Wert gewählt werden.
- •Wenn der Motor nicht unmittelbar beim Anlegen des Steuersignals mit der Rotation beginnt, erhöhen Sie die Anfangsspannung schrittweise, bis die richtige Einstellung erreicht ist.
- Wenn der Motor mit der Rotation beginnt, jedoch innerhalb der eingestellten Anlaufzeit nicht die volle Geschwindigkeit erreicht, erhöhen Sie einfach die Einstellung für die Anlaufzeit.


Schritt 2 - Anlaufzeit einstellen


- Nehmen Sie die Einstellung der Anlaufzeit erst dann vor, wenn Sie den richtigen Wert für die Anfangsspannung gefunden haben. Erhöhen oder verringern Sie die Anlaufzeit je nach den Erfordernissen der Anwendung.
- Wenn die Anwendung unter wechselnden Lastbedingungen startet, geben Sie einige Sekunden als Reserve zur Anlaufzeit hinzu.

Schritt 3 - Auslaufzeit einstellen

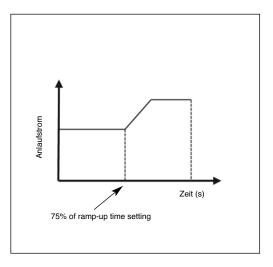
 Der Sanftstopp wird bei bestimmten Anwendungen wie Wasserpumpen und Transportbändern benötigt, um ein sanfteres Abschalten zu erreichen.

- Das Sanftstartgerät reduziert die Motorspannung stufenweise, bis die eingestellte Auslaufzeit verstrichen ist. Anschließend geht der Motor in den Freilauf über.
- Hinweis: Sofern nicht anders benötigt, empfehlen wir, die Einstellung für den Sanftstopp bei 0 Sekunden zu belassen. Bei einer Auslaufzeit von 0 Sekunden geht der Motor unmittelbar nach dem Abfallen des Steuersignals (A1-A2 bei RSGD40-Modellen und ST bei RSGD60-Modellen) in den Freilauf über und läuft bis zum Stopp aus.

Typische Einstellungen

Hinweis: Die folgenden Werte stellen typische Einstellungen für bestimmte Anwendungen dar und dienen nur zu Informationszwecken. Wir empfehlen, das Sanftstartgerät in der konkreten Anwendung zu testen, um die optimalen Einstellungen zu finden.

Anwendung	Anfangsspannung	Anlaufzeit (s)	Auslaufzeit (s)	
Hydraulische Aufzüge	40%	2	0	
Hubkolbenverdichter	40%	3	0	
Schraubenverdichter	50%	10	0	
Scrollkompressoren	40%	1	0	
Lüfter mit niedrigem Trägheitsmoment	40%	10	0	
Lüfter mit hohem Trägheitsmoment	40%	15 – 20	0	
Pumpe	40%	10	10	
Radialgebläse	40%	5	0	
Transportband	50%	10	5	

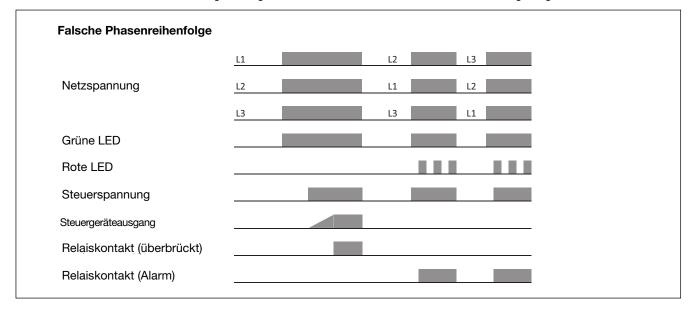

Starting Method

Die RSGD-Serie von Sanftstartgeräten arbeitet mit einer Begrenzungsmethode für den Einschaltstrom, um den maximalen Anlaufstrom zu limitieren. Der Grenzstrom richtet sich nach der Einstellung für die Anfangsspannung: je höher die eingestellte Anfangsspannung, desto höher der Anlaufstrom.

HP-Algorithmus

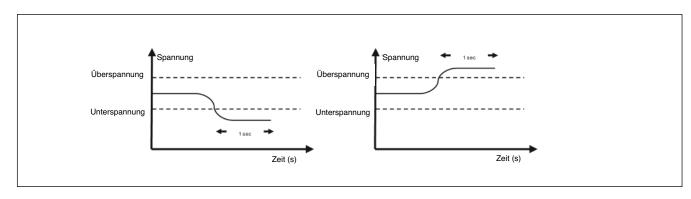
Bei diesem Algorithmus überprüft das RSGD kontinuierlich, ob sich der Motor im Zustand der Rotorblockage befindet. Falls der Motor nach 75 % der eingestellten Anlaufzeit noch nicht die Nenndrehzahl erreicht hat, erhöht das RSGD stufenweise den Grenzstrom, um den Startvorgang des Motors innerhalb der vom Benutzer festgelegten Anlaufzeit abzuschließen.

Beispiel: Wenn eine Anlaufzeit von 10 Sekunden gewählt wurde, überprüft das RSGD nach 7,5 Sekunden, ob der Motor angelaufen ist. Falls erforderlich, erhöht das RSGD anschließend stufenweise den Grenzstrom, damit der Motor seine Nenndrehzahl erreicht, bevor die Anlaufzeit verstrichen ist.

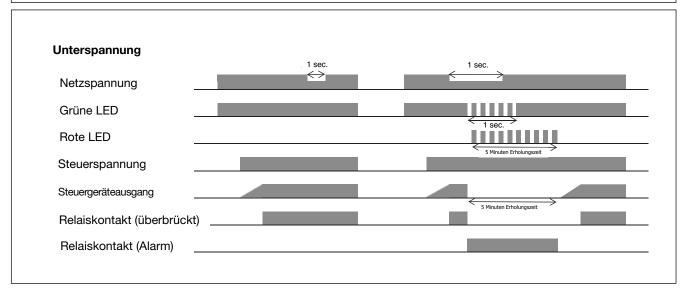


Alarmbeschreibung

Das RSGD ist mit verschiedenen Diagnose- und Schutzfunktionen ausgestattet. Alle diese Funktionen werden mithilfe einer Blinksequenz der roten LED signalisiert. Nach jedem Alarm wird wie im Datenblatt beschrieben eine Selbstheilungsroutine ausgeführt (Ausnahme: Alarm für falsche Phasenreihenfolge).

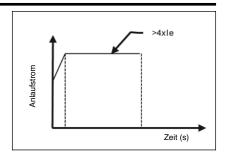

Falsche Phasenreihenfolge (2-maliges Blinken)

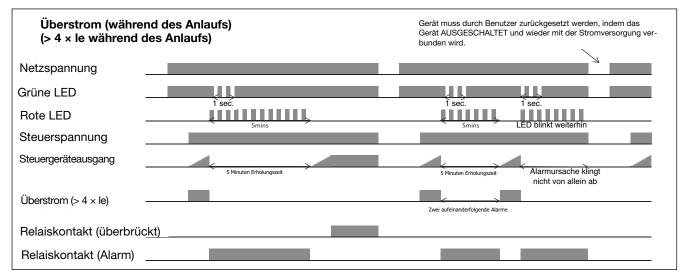
Wenn der Netzanschluss am Sanftstartgerät nicht in der richtigen Reihenfolge (L1, L2, L3) vorgenommen wurde, löst das RSGD-Sanftstartgerät den Alarm für falsche Phasenreihenfolge aus, und der Motor wird nicht gestartet. In diesem Fall ist ein Eingriff durch den Anwender erforderlich, um die Beschaltung zu korrigieren, da bei diesem Alarmzustand keine Selbstheilung erfolgt.



Netzspannung außerhalb des Bereichs (3-maliges Blinken)

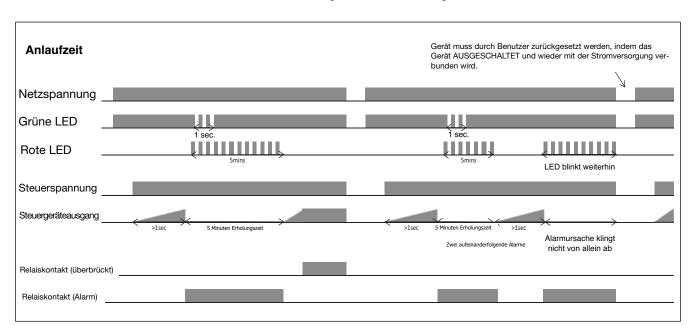
Frequenz außerhalb des Bereichs (4-maliges Blinken)


Die RSGD-Sanftstartgeräte können sowohl mit einer Netzfrequenz von 50 Hz als auch mit 60 Hz arbeiten. Die Betriebsfrequenz wird beim Einschalten automatisch erkannt. Der Alarm wird ausgelöst, falls die erkannte Frequenz den festgelegten Betriebsbereich über- oder unterschreitet.



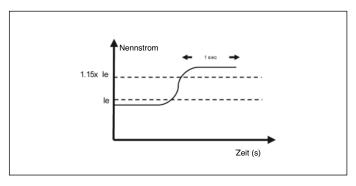
Überstrom während des Anlaufs (5-maliges Blinken)

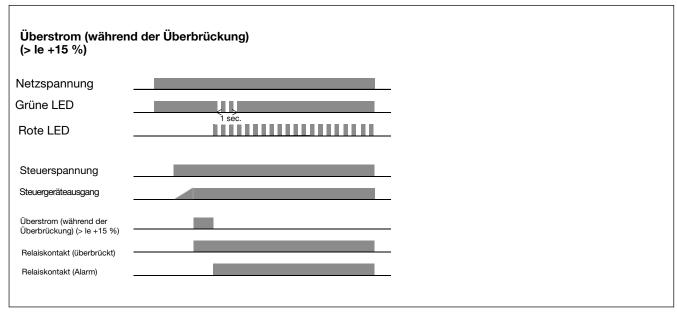
Wenn während des Anlaufvorgangs ein Anlaufstrom von $> 4 \times$ Ie erkannt wird, löst das RSGD den Überstromalarm aus (5-maliges Blinken). Dieser Alarm kann verschiedene Ursachen haben:


- 1. Die Anfangsspannung ist auf einen zu hohen Wert eingestellt.
- 2. Die Nennleistung des RSGD-Sanftstartgeräts ist zu klein für den gesteuerten Verbraucher.
- 3. Die Motorwindungen sind beschädigt.

Anlaufzeit (6-maliges Blinken)

Die RSGD-Sanftstartgeräte überwachen die Ströme, um die Nenndrehzahl des Motors abzuschätzen und die Überbrückungsrelais erst im richtigen Moment einzuschalten (EIN). Auf diese Weise wird der Durchfluss starker Stromstöße durch die Überbrückungsrelais verhindert, wodurch die Kontakte der Relais beschädigt werden könnten. Wenn der Motor innerhalb der eingestellten Anlaufzeit nicht die richtige Drehzahl erreicht, löst das RSGD den Alarm für die Anlaufzeit aus. In diesem Fall empfehlen wir, die Anlaufzeit zu erhöhen, um dem Motor das Erreichen der richtigen Drehzahl zu ermöglichen.


Überhitzung (7-maliges Blinken)


Das RSGD-Sanftstartgerät misst kontinuierlich die Temperatur des Kühlkörpers und der Thyristoren (SCRs). Wenn die maximal Innentemperatur überschritten wird, wird ein Überhitzungsalarm ausgelöst, und das RSGD geht in einen Selbstheilungsmodus über, um dem Sanftstartgerät die Möglichkeit zum Abkühlen zu geben. Dieser Zustand kann durch eine zu hohe Anzahl von Startvorgängen pro Stunde, eine Überlastungssituation beim Starten und/oder Stoppen oder durch hohe Umgebungstemperaturen ausgelöst werden.

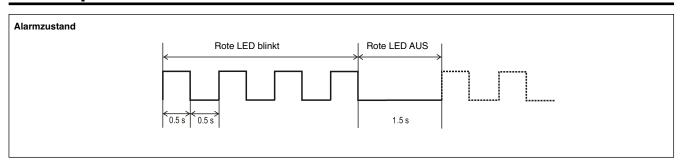
Überstrom während der Überbrückung (8-maliges Blinken)

Wenn sich das RSGD im Überbrückungsmodus befindet, wird der Strom überwacht. Wenn der gemessene Strom für einen Zeitraum von 1 Sekunde 15 % über dem Nennstrom des Sanftstartgeräts liegt (1,15 × Ie), wird der Alarm für Überstrom während der Überbrückung ausgelöst. Dieser Alarm dient lediglich zu Informationszwecken und stellt keine geeignete Schutzvorrichtung gegen Überstrom dar. Die Überbrückungsrelais werden durch diesen Alarm nicht abgeschaltet, und es ist Aufgabe des

Anwenders, ein anderes geeignetes Mittel als Schutz gegen Überstrom zu installieren.

Unsymmetrische Spannung (9-maliges Blinken)

Das Gerät misst die Spannungen aller drei Phasen. Wenn bei einer beliebigen Phase eine Abweichung von mehr als 10 % auftritt, löst das RSGD den Alarm für unsymmetrische Spannung aus, um eine Beschädigung des Motors zu verhindern.


Alarm-LED-Anzeigen (rote LED)

Blinken	Fehlerbeschreibung	Position der Relaiskontakte		Aktion	
	rememeschiebung	Alarm (11, 12)	Überbrückung (21, 24)	AKUOII	
2	Falsche Phasenreihenfolge	Offen	Offen	Physische Änderung	
3	Netzspannung außerhalb des Bereichs	Offen	Offen		
4	Frequenz außerhalb des Bereichs	Offen	Offen	Automatisches Rücksetzen mit 5 Minuten	
5	Überstrom (während des Anlaufs)	Offen	Offen		
6	Anlaufzeit	Offen	Offen		
7	Überhitzung	Offen	Offen		
8	Überstrom (während der Überbrückung)	Offen	Geschlossen	User intervention required to stop the controller.	
9	Unsymmetrische Versorgungsspannung	Offen	Offen	Automatisches Rücksetzen mit 5 Minuten Erholungszeit unter der Voraussetzung, dass alle Phasen (L1, L2, L3) verbunden sind.	

Status-LED-Anzeigen (grüne LED)

LED-Status	Zustand	Position der Relaiskontakte		
	Zustanu	Alarm (11, 12)	Überbrückung (21, 24)	
Blinken	Erholungszeit zwischen Startvorgängen	Geschlossen	Offen	
Dauerhaft an	Leerlaufzustand	Geschlossen	Offen	
Dauerhaft an	Anlauf	Geschlossen	Offen	
Dauerhaft an	Überbrückt	Geschlossen	Geschlossen	

Blinksequenz

Kurzschlussschutz

Schutzauslegung, Typ 1 und Typ 2:

Der Typ-1-Schutz impliziert, dass das zu testende Gerät nach einem Kurzschluss nicht länger betriebsbereit ist.

Bei Typ-2-Auslegung ist das zu testende Gerät nach dem Kurzschluss weiterhin betriebsbereit. In beiden Fällen muss der Kurzschluss jedoch unterbrochen werden. Die Sicherung zwischen dem Gehäuse und der Spannungsversorgung darf nicht geöffnet werden. Die Klappe bzw. die Abdeckung des Gehäuses darf nicht geöffnet sein. Die Leiter und Anschlüsse dürfen nicht beschädigt sein, und die Leiter nicht von den Anschlüssen gelöst sein. Die isolierende Unterlage darf keine Brüche oder Risse aufweisen, welche die Befestigung der spannungsführenden Teile beeinträchtigen. Es darf keine Entladung von Teilen auftreten, und es darf kein Brandrisiko bestehen. Die in der folgenden Tabelle aufgelisteten Produktvarianten sind für den Einsatz in Stromkreisen geeignet, welche nicht mehr als 5.000 Arms (symmetrisch) bei maximal 400 oder 600 Volt liefern, wenn durch Sicherungen geschützt. Es wurden Tests bei 5.000 A mit flinken Sicherungen der Klasse RK5 durchgeführt. Informationen zur maximal erlaubten Strombelastbarkeit der Sicherung finden Sie in der Tabelle unten. Nur Sicherungen verwenden.

Koordinationstyp 1 (UL508) – Verzögerte Sicherungen

Teilenr.	Max. Sicherungsgröße [A]	Klasse	Strom [kA]	Max. Spannung [VAC]
RSGD12.V	20	RK5	5	400 / 600
RSGD16.V	20	RK5	5	400 / 600
RSGD25.V	25	RK5	5	400 / 600
RSGD32.V	35	RK5	5	400 / 600
RSGD37.V	50	RK5	5	400 / 600
RSGD45.V	50	RK5	5	400 / 600

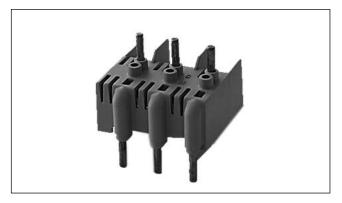
Koordinationstyp 1 - Motorschutzschalter

Teilenr.	Modellnr.	Strom [kA]	Max. Spannung [VAC]	
RSGD12.V	GMS32S-17 / GMS32H-17	10	400 / 600	
RSGD16.V	GMS32S-17 / GMS32H-17	10	400 / 600	
RSGD25.V	GMS32H-32	10	400 / 600	
RSGD32.V	GMS32H-32	10	400 / 600	
RSGD37.V	GMS63S-50 / GMS63H-50	10	400 / 600	
RSGD45.V	GMS63S-50 / GMS63H-50	10	400 / 600	

Geräte mit einem Nennstrom von 12 A oder 16 A, die durch Motorschutzschalter geschützt sind, müssen mit einer minimalen Kabellänge von 15 m und einem Mindestquerschnitt von 2,5 mm2 beschaltet werden. Geräte mit einem Nennstrom von 25 A oder höher, die durch Motorschutzschalter geschützt sind, müssen mit einer minimalen Kabellänge von 10 m beschaltet werden.

Koordinationstyp 2 (IEC/EN 60947-4-2) – Halbleitersicherungen

Teilenr.	Max. Sicherungsgröße [A]	Modellnr.	Strom [kA]	Max. Spannung [VAC]
RSGD12.V	35	A70 QS 35-4	5	400 / 600
RSGD16.V	35	A70 QS 35-4	5	400 / 600
RSGD25.V	60 / 63	A70 QS 60-4 / 6.9xxCP URD 22x58/63 (xx = 00 / 21)	5	400 / 600
RSGD32.V	60 / 63	A70 QS 60-4 / 6.9xxCP URD 22x58/63 (xx = 00 / 21)	5	400 / 600
RSGD37.V	125	A70 QS 125-4	5	400 / 600
RSGD45.V	125	A70 QS 125-4	5	400 / 600


Nennstrom/-leistung: kW (IEC 60947-4-2) & HP (UL508) @ 40°C

Sicherungen	IEC Nennbetriebsstrom	220 – 240 VAC	380 – 415 VAC	440 – 480 VAC[VAC]	550 - 600 VAC
RSGD4012	12 AAC	3 kW/ 3 HP	5.5 kW/ 5 HP	-	-
RSGD4016	16 AAC	4 kW/ 5 HP	7.5 kW/ 7.5 HP	-	-
RSGD4025	25 AAC	5.5 kW/ 7.5 HP	11 kW/ 10 HP	-	-
RSGD4032	32 AAC	9 kW/ 10 HP	15 kW/ 15 HP	-	-
RSGD4037	37 AAC	9 kW/ 10 HP	18.5 kW/ 20 HP	-	-
RSGD4045	45 AAC	11 kW/ 15 HP	22 kW/ 25 HP	-	-
RSGD6012	12 AAC	3 kW/ 3 HP	5.5 kW/ 5 HP	5.5 kW/ 7.5 HP	9 kW/ 10 HP
RSGD6016	16 AAC	4 kW/ 5 HP	7.5 kW/ 7.5 HP	9 kW/ 10 HP	11 kW/ 15 HP
RSGD6025	25 AAC	5.5 kW/ 7.5 HP	11 kW/ 10 HP	11 kW/ 15 HP	20 kW/ 20 HP
RSGD6032	32 AAC	9 kW/ 10 HP	15 kW/ 15 HP	18.5 kW/ 20 HP	22 kW/ 30 HP
RSGD6037	37 AAC	9 kW/ 10 HP	18.5 kW/ 20 HP	22 kW/ 25 HP	30 kW/ 30 HP
RSGD6045	45 AAC	11 kW/ 15 HP	22 kW/ 25 HP	22 kW/ 30 HP	37 kW/ 40 HP

Zubehör

RTPM (Verbindungsklammer)

Bestellcode

Verbindungsklammer für Motoranlasser GMS-32-H

RTPMGMS32HL

Menge: 10 Stck. pro Beutel

Verbindungsklammer für Motoranlasser GMS-32-S

RTPMGMS32SL

• Menge: 10 Stck. pro Beutel

GMS (Motorschutzschalter)

Bestellcode

GMS-32S-13

Typ S: Standard, H: Hoher Abschaltstrom

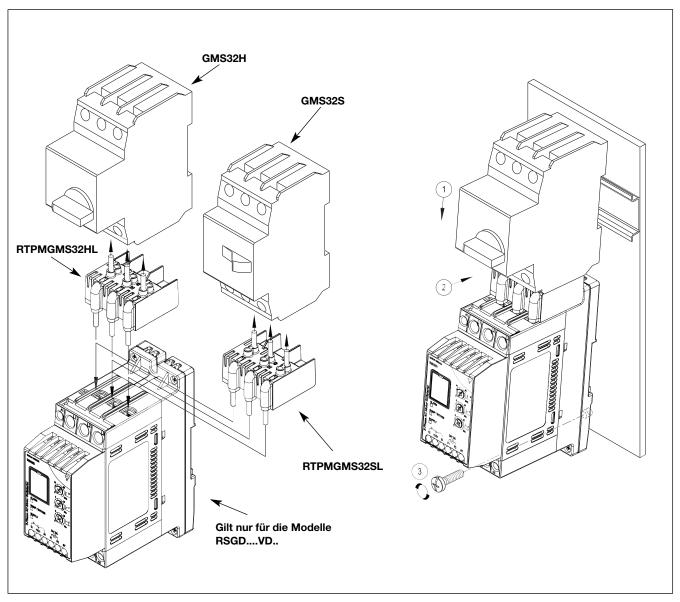
Nennbetriebsstrom

- Überlast- und Kurzschlussschutz
- Nenn-Betriebsstrombereich: 0,16 bis 32AAC
- Magnetische Ansprechschwelle max. 13 x le
- Einstellbare thermische Ansprechschwelle
- Automatischer Ausgleich der Umgebungstemperatur
- Auslöseklasse 10
- CE, cULus

Bestellcode

GMS-63H-13

Nennbetriebsstrom


- Überlast- und Kurzschlussschutz
- Nenn-Betriebsstrombereich: 10 bis 63AAC
- Magnetische Ansprechschwelle max. 13 \times le
- Einstellbare thermische Ansprechschwelle
- Automatischer Ausgleich der Umgebungstemperatur
- Auslöseklasse 10
- CE, cULus

Hinweis: Falls Sie höhere Auslöseklassen benötigen, wenden Sie sich an Ihren autorisierten Carlo Gavazzi-Vertriebspartner.

Zubehör

Installationsanleitung für GMS

Gehen Sie folgendermaßen vor, um den GMS-Motoranlasser auf dem RSGD-Sanftstartgerät zu montieren:

Schritt 1: Lösen Sie die Schrauben an den Anschlüssen des RSGD- und des GMS-Geräts, und führen Sie die passende RTPM-Klammer in die Anschlüsse ein.

Schritt 2: Ziehen Sie die Schrauben am GMS- und am RSGD-Gerät mit dem jeweiligen maximalen Anzugsdrehmoment an.

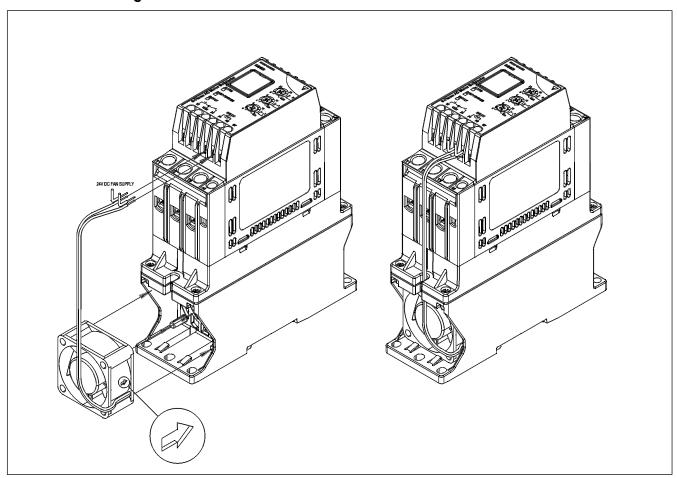
Schritt 3: Montieren Sie die komplette Baugruppe auf der DIN-Schiene, und verschrauben Sie das RSGD wie in der Abbildung dargestellt mit der Schalttafel.

Hinweis: Montieren Sie den GMS-Motoranlasser stets auf der Netzanschlussseite (L1, L2, L3) des RSGD-Sanftstartgeräts.

Wichtig: Stellen Sie vor der Installation und Deinstallation sicher, dass sich der Hebel am GMS-Anlasser in der Position AUS (OFF) befindet.

Zubehör

Lüfter



Bestellcode

- Menge: 10 Stck. pro Beutel
- Versorgung über 24 VDC

RFAN4024X10

Installationsanleitung für Lüfter

Die Modelle RSGD..37.. und RSGD..45.. können mit einem Lüfter ausgestattet werden, falls eine höhere Anzahl von Schaltvorgängen pro Stunde (als der im Datenblatt angegebene Wert) benötigt wird. Schließen Sie den Lüfter wie in der Abbildung dargestellt an. Der Lüfter benötigt eine externe Versorgungsspannung von 24 VDC. Der (+)-Anschluss der Versorgungsspannung muss mit dem roten Kabel, der (-)-Anschluss der Versorgungsspannung mit dem schwarzen Kabel verbunden werden.

Der Lüfter muss unbedingt mit der richtigen Polarität an die Versorgungsspannung angeschlossen werden. Andernfalls dreht sich der Lüfter in die falsche Richtung, und es droht Beschädigung der Halbleiter durch Überhitzung.