DMU318...W 90° angled ultrasonic sensors with analog and switching output

Dimensioned drawing

A Active sensor surface
B Teach-in button
C Indicator diodes

Electrical connection

Technical data

Ultrasonic specifications
Scanning range ${ }^{1)}$
Adjustment range
Ultrasonic frequency
Typ. opening angle
Resolution
Direction of beam
Reproducibility
Switching hysteresis
Analog output accuracy
Temperature drift

Timing

Switching frequency
Response time
Readiness delay

Electrical data

Operating voltage $U_{B}{ }^{5}$)
Residual ripple
Open-circuit current
Analog output
Analog output
Load resistance
Characteristic curve adjustment

Analog output error signal
Switching output
Switching output / Function

Output current
Switching range adjustment
Changeover NO/NC

Indicators

Yellow LED
Blue LED
Yellow/green or blue/green LED flashing Green LFD

Mechanical data

Housing
Active surface
Weight
Ultrasonic transducer
Connection type
Fitting position

Environmental data

Ambient temp. (operation/storage)
Protective circuit ${ }^{7}$)
VDE protection class
Degree of protection
Standards applied
Certifications

DMU318-400.W3/...-M12
$50 . . .400 \mathrm{~mm}^{2)}$
$50 \ldots 400 \mathrm{~mm}$
300 kHz
$8{ }^{\circ}$
$<2 \mathrm{~mm}$
90° to longitudinal axis
$+0.5 \%$ 1) 3)
1% 3)
$1 \% 3)$
$\leq 5 \% 4)$

10 Hz
500 ms
$<900 \mathrm{~ms}$ (analog output),
< 500 ms (switching output)

DMU318-1600.W3/...-M12
$150 . . .1600 \mathrm{~mm}^{2)}$
$150 \ldots 1600 \mathrm{~mm}$
230 kHz
8°
$<2 \mathrm{~mm}$
90° to longitudinal axis
$\pm 0.5 \%$ 1) ${ }^{3}$)
$\pm 0.5 \%$
1% 3)
$1 \% 3$)
$1 \% 3)$
$\leq 5 \% 4)$

2 Hz

500 ms
$<900 \mathrm{~ms}$ (analog output),
$<500 \mathrm{~ms}$ (switching output)
$10 \ldots 30 \mathrm{~V}$ DC (incl. $\pm 7 \%$ residual ripple)
$\pm 7 \%$ of U_{B}
$\leq 50 \mathrm{~mA}$
.../..C... 1 analog output $4 \ldots 20 \mathrm{~mA}$
.../..V... 1 analog output 0 ... 10V
Current output: $R_{L} \leq 500 \Omega$,
Voltage output: $R_{L} \geq 2 \mathrm{k} \Omega$
1-point teach: teach in button $2 \ldots 7 \mathrm{~s}$,
2-point teach: teach in button $7 \ldots 12$ s,
Characteristic curve inversion: teach in button $>12 \mathrm{~s}$
Distance too small: approx. 3.8 mA ,
Distance too large: approx. $11 \mathrm{~V} /$ approx. 21 mA
.../4... 1 PNP transistor switching output
OUT 1 (pin 4): NO contact preset
.../2... 1 NPN transistor switching output
OUT 1 (pin 4): NO contact preset
Max. 100 mA
1-point teach: teach-in button $2 \ldots 7 \mathrm{~s}$,
2-point teach: teach-in button 7 ... 12s
Teach-in button $>12 \mathrm{~s}$
OUT2: object detected
Analog OUT: object detected
Teach-in / teaching error
Object within the scanning range
Plastic (PBT)
Epoxy resin, glass fiber reinforced
75 g
Piezoceramic 6)
M12 connector, 5-pin
Any
$-20^{\circ} \ldots+70^{\circ} \mathrm{C} /-20^{\circ} \ldots+70^{\circ} \mathrm{C}$
1,2,3
III 1
IP 67
EN 60947-5-2
UL 508, CSA C22.2 No.14-13 5) 8)

1) At $20^{\circ} \mathrm{C}$
2) Target: $200 \mathrm{~mm} \times 200 \mathrm{~mm}$ plate
3) From end value
4) Over the temperature range $-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
5) For UL applications: use is permitted exclusively in Class 2 circuits according to NEC
6) The ceramic material of the ultrasonic transducer contains lead zirconium titanate (PZT)
7) 1=short-circuit and overload protection, $2=$ polarity reversal protection, $3=$ wire break and inductive protection
8) These proximity switches shall be used with UL Listed Cable assemblies rated $30 \mathrm{~V}, 0.5 \mathrm{~A}$ min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)

Diagrams

DMU318-400.W3/...-M12
Typ. response behavior (plate $200 \times 200 \mathrm{~mm}$)

DMU318-1600.W3/...-M12

Target (fixed):
plate or rod

Notes

Observe intended use!

${ }^{4}$) This product is not a safety sensor and is not intended as personnel protection.
${ }^{4}$ The product may only be put into operation by competent persons.
${ }^{\Perp}$ Only use the product in accordance with its intended use.

DMU318...W 90° angled ultrasonic sensors with analog and switching output

Part number code

Operating principle	
HTU	Ultrasoonic sensor, scanning principle, with background suppression
DMU	Ultrasonic sensor, distance measurement
RKU	Ultrasonic sensor, retro-reflective ultrasonic sensor

Series
$318 \quad 318$ series, cylindrical short M18 design

Scanning range in mm

400	$50 \ldots 400$
1600	$150 \ldots 1600$

Equipment

W Design with 90° angled head
3 Teach button on the sensor

Pin assignment of connector pin 4 / black cable wire (OUT1)
$4 \quad$ PNP output, NO contact preset
P PNP output, NC contact preset
2 NPN output, NO contact preset
N NPN output, NC contact preset

Pin assignment of connector pin 2 / white cable wire (Analog 0UT/OUT2)
$4 \quad$ PNP output, NO contact preset
P PNP output, NC contact preset
2 NPN output, NO contact preset
N NPN output, NC contact preset
C Analog output $4 \ldots 20 \mathrm{~mA}$
V Analog output 0... 10V

Pin assignment of connector pin 5 / gray cable wire (Sync / MUX)
K Synchronization/multiplex input

Connection technology
M12 M12 connector, 5-pin

Order guide

The sensors listed here are preferred types; current information at www.leuze.com.

Designation

Part no.

Scanning range / switching output / analog output / teach-in / design

$50 \ldots 400 \mathrm{~mm} /$ PNP / current output $4 \ldots 20 \mathrm{~mA} /$ teach button / with 90° angled head
$50 \ldots 400 \mathrm{~mm} /$ PNP / voltage output $0 \ldots 10 \mathrm{~V} /$ teach button / with 90° angled head
$50 \ldots 400 \mathrm{~mm}$ / NPN / current output $4 \ldots 20 \mathrm{~mA}$ / teach button / with 90° angled head
$50 \ldots 400 \mathrm{~mm} / \mathrm{NPN} /$ voltage output $0 \ldots 10 \mathrm{~V} /$ teach button / with 90° angled head
$150 \ldots 1600 \mathrm{~mm} / \mathrm{PNP}$ / current output $4 \ldots 20 \mathrm{~mA} /$ teach button / with 90° angled head
$150 \ldots 1600 \mathrm{~mm} /$ PNP / voltage output $0 \ldots 10 \mathrm{~V}$ / teach button / with 90° angled head
$150 \ldots 1600 \mathrm{~mm} / \mathrm{NPN} /$ current output $4 \ldots 20 \mathrm{~mA} /$ teach button / with 90° angled head
$150 \ldots 1600 \mathrm{~mm} / \mathrm{NPN} /$ voltage output $0 \ldots 10 \mathrm{~V} /$ teach button / with 90° angled head

DMU318-400.W3/4CK-M12 50136102
DMU318-400.W3/4VK-M12 50136100
DMU318-400.W3/2CK-M12 50136103
DMU318-400.W3/2VK-M12 50136101
DMU318-1600.W3/4CK-M12 50136108
DMU318-1600.W3/4VK-M12 50136106
DMU318-1600.W3/2CK-M12 50136109
DMU318-1600.W3/2VK-M12 50136107

Leuze electronic

DMU318...W

Device functions and indicators - switching output

The sensor has a button for setting switching output OUT1 and analog output Analog OUT. Use the teach button to perform the 1-point teach, the 2-point window-teach and to changeover the switching function (NO contact/NC contact). Device status and switching states for OUT1 are indicated as follows by means of a yellow LED:
Switching output OUT1

Note!
The switching behavior is not defined in the dead zone.

Switching behavior with 2-point window-teach as a function of the switching function

DMU318...W

90° angled ultrasonic sensors with analog and switching output

Adjusting the switching points via the teach button

The switching point of the sensor is set to 400 mm or 1600 mm (static 1-point teach) on delivery.
By means of a simple operating procedure, the switching point for the output OUT1 can be individually taught to an arbitrary distance within the scanning range with 1-point teach (static) or 2-point window-teach (static).
Moreover, the output function can be switched from NO contact (NO - normally open) to NC contact (NC - normally closed).
Selecting the output that is to be taught: OUT1 or Analog OUT

1. Press the teach button for $\geq \mathbf{2 s}$ to activate teach mode. The yellow LED (OUT 1) flashes at 1 Hz . While in this state, output OUT 1 can be taught.
2. To teach output Analog OUT, briefly press the teach button again. The blue LED (Analog OUT) now flashes at 1 Hz . While in this state, output Analog OUT can be taught.
3. Briefly press the teach button again to toggle between outputs OUT 1 and Analog OUT in this state. The flashing LED indicates which output is ready for teaching:
yellow LED flashing = OUT 1 ready for teaching, blue LED flashing = Analog OUT ready for teaching.

Teaching output OUT 1

First activate the previously described teach mode for output OUT 1.

1-point teach (static)	2-point window-teach (static) 1)
1. Place object at desired switching distance.	1. First, place object at desired switching distance for switching point 1.
2. To adjust the output OUT1, press the teach button for $2 \ldots 7 \mathrm{~s}$ until the yellow LED flashes at 3 Hz .	2. To adjust the output OUT1, press the teach button for $\mathbf{7}$... 12s until the yellow and green LEDs flash alternately at 3 Hz .
3. Release the teach button to complete the teach event. The current object distance has been taught as the new switching point.	3. Release the button. The sensor remains in teach mode and the LEDs continue to flash.
4. Error-free teach: LED states and switching behavior according to the diagram shown above. Faulty teach (object may be too close or too far away - please note scanning range): green and yellow LEDs flash at $\mathbf{8 H z}$ until an error-free teach event is performed. The affected output is inactive as long as there is a teaching error.	4. Then, place the object at the desired switching distance for switching point 2. Note: The minimum distance between the switching points is as follows: scanning range of $400 \mathrm{~mm}: 40 \mathrm{~mm}$ scanning range of $1600 \mathrm{~mm}: 160 \mathrm{~mm}$
	5. Briefly press the teach button again to complete the teach event. The switching window was taught in.
	6. Error-free teach: LED states and switching behavior according to the diagram shown above. Faulty teach (object may be too close or too far away - please note scanning range): green and yellow LEDs flash at $\mathbf{8 H z}$ until an error-free teach event is performed.

[^0]
DMU318...W

Adjusting the switching function (NC/NO) via the teach button

The switching function of the sensor is preset as follows on delivery:

- OUT 1: NO contact

The output function can be switched from NO contact (NO - normally open) to NC contact (NC - normally closed) and vice versa. If the switching function is changed, the switching output is changed to the opposite state (toggled).
First activate the previously described teach mode for output OUT 1.

Changeover of the switching function

1. To change the switching function of output OUT 1, press the teach button for longer than $\mathbf{1 2 s}$.

The current state of output OUT 1 is frozen during the adjustment process.
2. The green and yellow LEDs flash alternately at $\mathbf{3 H z}$.

If the yellow LED is ON afterwards, output OUT 1 functions as a normally open contact (NO).
If the yellow LED is OFF afterwards, output OUT 1 functions as a normally closed contact (NC).

DMU318...W 90° angled ultrasonic sensors with analog and switching output

Device functions - analog output

In measurement operation, the blue LED displays the behavior of analog output Analog OUT.
Analog output Analog OUT

Rising characteristic curve	Falling characteristic curve

Note!

When setting the analog output (teach) via the teach button, one rising characteristic curve is always taught; with 2-point teach, independent of the selected object distances near/far. The characteristic output curve can be inverted, however.

Adjusting the analog output via the teach button

On delivery, the characteristic output curve of the sensor is set as a rising characteristic curve with spread over the entire scanning range: $4 \ldots 20 \mathrm{~mA}$ or $0 \ldots 10 \mathrm{~V}$ corresponds to an object distance of $50 \ldots 400 \mathrm{~mm}$ or $150 \ldots 1600 \mathrm{~mm}$, respectively.
The analog output can be set by means of 1-point teach or 2-point teach.

Note!

When setting the analog output (teach) via the teach input, one rising characteristic curve is always taught; with 2-point teach, independent of the selected object distances near/far. The characteristic output curve can be inverted, however.

Selecting the output that is to be taught: OUT1 or Analog OUT

1. Press the teach button for $\geq 2 \mathrm{~s}$ to activate teach mode. The yellow LED (OUT 1) flashes at 1 Hz . While in this state, output OUT 1 can be taught.
2. To teach output Analog OUT, briefly press the teach button again. The blue LED (Analog OUT) now flashes at 1 Hz . While in this state, output Analog OUT can be taught.
3. Briefly press the teach button again to toggle between outputs OUT 1 and Analog OUT in this state. The flashing LED indicates which output is ready for teaching:
yellow LED flashing = OUT 1 ready for teaching, blue LED flashing = Analog OUT ready for teaching.

1-point teach of the analog output
 First activate the previously described teach mode for output Analog OUT.

By selecting an object distance within the scanning range, the characteristic curve of the analog output can be adjusted.
If an object is located outside of the taught measurement range, an error signal is output. A different analog signal is output here by the sensor for the errors "distance too close: object outside of the measurement range" and "distance too far: object outside of the measurement range".

1-point teach - rising characteristic curve

1. Place object at desired distance for the end point of the measurement range.

> Note: \quad The minimum object distance for the end of the measurement range is as follows: scanning range of $400 \mathrm{~mm}: 90 \mathrm{~mm}$ scanning range of $1600 \mathrm{~mm}: 310 \mathrm{~mm}$
2. To adjust analog output Analog OUT, press the teach button for $2 \ldots$... \mathbf{s} until the blue and green LEDs flash simultaneously at 3 Hz .
3. Release the button. The characteristic curve with plot rising from the start of the range (50 mm or 150 mm) to the set object distance was taught in.
4. Error-free teach: LED states acc. to "Technical data" -> "Indicators".

Faulty teach: green and blue LEDs flash at 8 Hz until an error-free teach is performed.

2-point teach of the analog output

First activate the previously described teach mode for output Analog OUT.

By selecting 2 object distances within the scanning range, the characteristic curve of the analog output can be adjusted.
If an object is located outside of the taught measurement range, an error signal is output. A different analog signal is output here by the sensor for the errors "distance too close: object outside of the measurement range" and "distance too far: object outside of the measurement range".

2-point teach - rising characteristic curve

1. Position the object at the first desired distance (near or far).
2. To adjust analog output Analog OUT, press the teach button for $7 \ldots 12 \mathrm{~s}$ until the blue and green LEDs flash alternately at $\mathbf{3 H z}$.
3. Release the button. The sensor remains in teach mode and the LEDs continue to flash.
4. Then position the object at the second desired distance (far or near).

Note: the minimum object distance between the start and end point of the measurement range for a scanning range of 400 mm is: 40 mm
for a scanning range of 1600 mm is: 160 mm
5. Briefly press the teach button again to complete the teach event.

The characteristic curve with rising plot from the near to the far object distance was taught in.
6. Error-free teach: LED states acc. to "Technical data" -> "Indicators".

Faulty teach: green and blue LEDs flash at 8 Hz until an error-free teach is performed.

Inverting the analog output (falling/rising characteristic curve)

First activate the previously described teach mode for output Analog OUT.
The characteristic curve of the analog output can be inverted, e.g., if a falling characteristic output curve is desired.

Inverting the characteristic curve

1. To invert the characteristic curve of the analog output Analog OUT, press the teach button for $>\mathbf{1 2 s}$ until the blue and green LEDs flash alternately.
2. Release the button. The characteristic curve plot was inverted.

The blue LED indicates the current setting of the analog output:
ON = rising characteristic curve
OFF = falling characteristic curve

DMU318...W

Synchronization of multiple DMU318 ultrasonic sensors

If adjacent ultrasonic sensors receive the signals of other sensors, so-called crosstalk occurs, which leads to faulty measurement results. Through temporal synchronization of the adjacent sensors, this can be avoided. Via the Sync/MUX input, the DMU318 ultrasonic sensors can be synchronized in 2 different ways:

Synchronous operation

In this operating mode the mutual interference of adjacent sensors can be avoided. For this purpose, up to 6 sensors of the same type are wired together in a network according to the following diagram.
The devices work in synchronous operation with a simultaneous transmission pulse. The response time of the individual sensors in the network corresponds approximately to that of a single sensor. However, an additional delay time of approx. 20 ms occurs in comparison to the specified response time in standard operation.

Synchronous operation wiring schematic

NOTE

Please make certain that the wiring is performed according to the connection diagram. Sync/MUX pin 5 on all sensors in the network must be connected to one another. Generation of the synchronization signal for all sensors in the network occurs automatically.

Multiplex operation

In this operating mode the mutual interference of adjacent sensors can be reliably avoided. For this purpose, up to 4 sensors of the same type are wired together in a network according to the following diagram.
The devices operate in multiplex operation with a cyclically time-delayed transmission pulse and are switched to a passive state outside of the active phase, whereby the states of the outputs are frozen until the next active phase. The response time of the individual sensor in the network is therefore extended with respect to the response time of a single sensor as follows:
Response time in the network = (Response time of sensor * n) $\mathbf{+ 2 5 \mathrm { ms } (\mathrm { n } = \text { number of sensors in the network) }}$
Multiplex operation wiring schematic

Please make certain that the wiring is performed according to the connection diagram. Sync/MUX pin 5 on all sensors in the network must be connected to one another. To activate multiplex operation, the Sync/MUX cable must be connected to GND for 5 s when applying the operating voltage.
Generation of the multiplex signal for all sensors in the network occurs automatically.

Resetting to factory settings

The sensor can be reset to the factory setting (1 switching point at 400 mm or 1600 mm , rising characteristic curve with spread over the entire scanning range).

Resetting to factory settings

1. When switching on the supply voltage (during power-on), press the teach button for $\mathbf{>} 5 \mathrm{~s}$.
2. Release the button. The green, yellow and blue LEDs flash alternately and very quickly for a brief time.

The sensor was reset to the factory setting:
switching output: 1 switching point at 400 mm or 1600 mm (1-point teach, static),
analog output: $4 \ldots 20 \mathrm{~mA}$ or $0 \ldots 10 \mathrm{~V}$ corresponds to an object distance of $50 \ldots 400 \mathrm{~mm}$ or $150 \ldots 1600 \mathrm{~mm}$, respectively.

[^0]: 1) See table "Switching behavior with 2-point window-teach as a function of the switching function"
