
Motor Controller AC Semiconductor Motor Controller Types RSB..15-B

- Soft starting and stopping of 3-phase squirrel cage motors
- Board-level solution
- Rated operational voltage: up to 480 VACrms, 50/60 Hz
- Rated operational current: 15 AAC 53 b
- Transient overvoltage protection built-in
- Integral bypassing of semiconductors

Product Description

Easy-to-use AC semiconductor motor controller. With this controller 3-phase torque can be independently with load currents up to 15 A can tiometers. be soft-started and/or soft-

stopped. Starting and stopping time as well as initial nominal adjusted by built-in poten-

Ordering Code

RSB 40 15 - B

Board level Motor Controller Rated operational voltage Rated operational current Control voltage

Type Selection

Туре	Rated operational voltage U _e	Rated operational Current I _e	Control voltage U₀	
RSB: Board level	22: 127/220 VACrms, 50/60Hz	15: 15AAC	-B: 200300VAC, 5 mA	
Motor Controller	40: 230/400 VACrms, 50/60Hz			
	48: 277/480 VACrms, 50/60Hz			

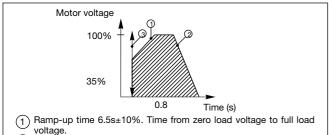
Input Specifications (Control Input)

Control voltage U _c	
A1-A2:	200300VAC, 5 mA
Rated AC frequency	50/60 Hz -5/+5Hz
Rated insulation voltage	630 V rms
	Overvoltage cat. III (IEC 60664)
Dielectric strength	
Dielectric voltage	2 kVAC (rms)
Rated impulse withstand volt.	4 kV (1.2/50 μs)

Supply Specifications

Overvoltage cat. III (IEC 60664)		
(IEC 60038)		
127/220 VACrms ± 15%		
230/400 VACrms ±15%		
227/480 VACrms ± 15%		
50/60 Hz -5/+5 Hz		
≤ 40 ms		
2 kVAC (rms) 4 kV (1.2/50 μs)		

Output Specifications


Utilization category	AC-53b Integral bypassing of semiconductors		
Overload current profile	15A: AC-53b:3-3:300		
Min. load current	200 mAAC rms		

General Specifications

Accuracy			
Ramp up	6.5 sec ± 10% on max.		
Ramp down	8 sec ± 10% on max.		
Initial torque	0 to 85% ± 10%		
Equipment class	A		
EMC Immunity	Electromagnetic Compatibility		
	acc. to EN 61000-6-2		
Operating temperature	-20° to +50°C (-4° to +122°F)		
Storage temperature	-50° to +85°C (-58° to +185°F)		
Control FASTON terminals	4.8 x 0.5 mm		
Power FASTON terminals	6.3 x 0.8 mm		
Approvals	UL, cUL compliant		
CE marking	Yes		
Norms	IEC/EN 60947-4-2		
Form designation	Form 1		
Degree of protection	IP00		
Pollution Degree	2		

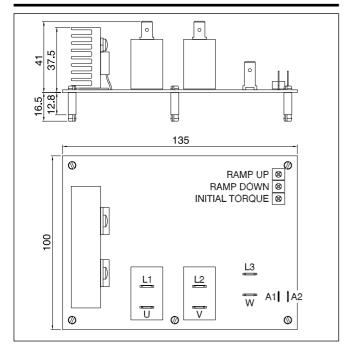

CARLO GAVAZZI

Operation Diagram 1

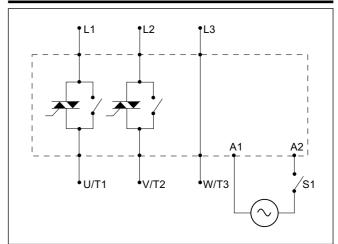
- Ramp-down time 8.0s±10%. Time from full load voltage to zero load current.
 (3) Initial torque 0 to 85% voltage at the start of the ramp-up function.

Operation Diagram 2

External Protection


1. Recommended semiconductor protection fuses

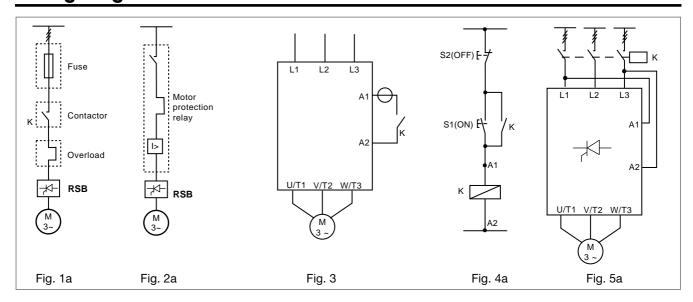
Type: 6.921 CP URQ 27x60 / 50, Ferraz Shawmut


2. Recommended motor protection circuit breakers

Motor full load current (AACrms)	2.5 - 4	4 - 6.3	6.3 - 9	9 - 12.5	12 - 15
Overload relay type Telemecanique: GV 2-	M 08	M 10	M 14	M 16	M16 M20
Overload relay type ABB:MS 325-	4	6.3	9	12.5	12.5 16
Motor protection circuit breaker type Allan-Bradley: KTA 3-25-	4	6.3	10	16	16

Dimensions

Connection Diagram


Mode of Operation

This motor controller is intended to be used to soft-start 3phase compressor induction motors and can reduce the starting currents of the system by up to 40%. Soft-starting is achieved by controlling the motor voltage. During running operation the semiconductors are bypassed by electromechanical relays.

The device rating is based on 12 starts per hour but this can be higher depending on the application. The controller is switching 2 lines. The 3rd line is continuously connected to the load. Overload protection is not provided in this motor controller and must therefore be installed separately.

CARLO GAVAZZI

Wiring Diagrams

The motor controller provides by-passing of the semiconductors during running operation. Therefore the semiconductors can only be damaged by short-circuit currents during ramp-up and ramp-down. Please note that the motor controller does not insulate the motor from the mains.

Figure 1: Protection of the device when using fuses.

Protection with semiconductor fuses is intended to protect the motor feeder and motor controller from damage due to short-circuit.

Figure 2: Protection using a thermal-magnetic motor protection relay.

The motor feeder is protected but damage to the motor controller is possible. When motor failure occurs, if part of the motor winding limits the fault current and the motor feeder is protected, this type of protection can be considered acceptable.

Figure 3: Control using a 2-position switch.

When K is closed, the control input is supplied to A1, A2 and soft starting of the motor is performed. When K is opened, soft stopping is performed.

Figure 4: Control using ON and OFF push buttons

Pushing S1 soft starts the RSB. Pushing S2 soft stops the RSB. K is an auxiliary contact of the mains contactor.

Figure 5: Control using 2 phases

Connecting input A1, A2 to two of the incomming lines will soft start the motor when K is operated. When K is switched off, the motor will stop (no soft stop).

This method of control is only valid for model RSB2215-B as max. Control voltage allowed across A1, A2 is 300VAC.