

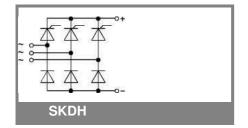
SEMIPONTTM 5

Half Controlled 3-phase Bridge Rectifier

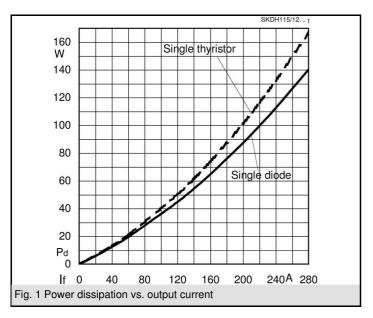
SKDH 145

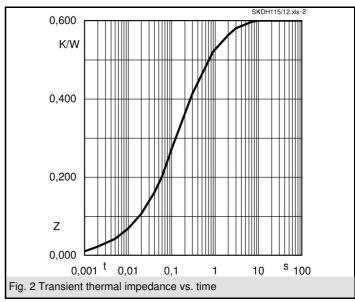
Target Data

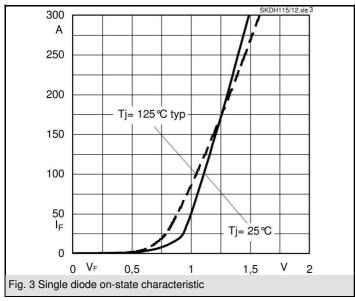
Features

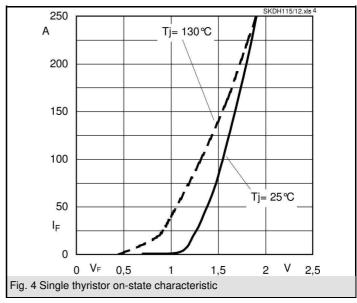

- Compact design
- · Two screws mounting
- Heat transfer and isolation through direct copper board (low R th)
- Low resistance in steady-state and high reliability
- · High surge currents
- UL -recognized, file no. E 63 532

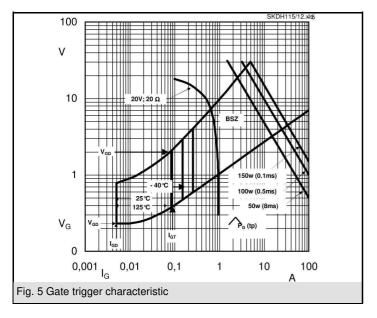
Typical Applications*

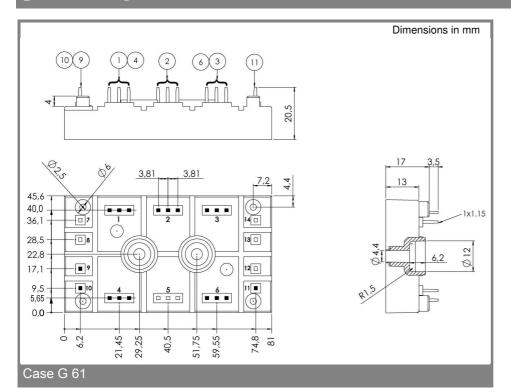

- For DC drives with a fixed direction of rotation
- Controlled field rectifier for DC motors
- · Controlled battery charger

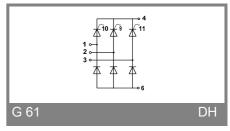

V _{RSM}	V_{RRM}, V_{DRM}	I _D = 140 A (full conduction)
V	V	(T _s = 80 °C)
1300	1200	SKDH 145/12
1700	1600	SKDH 145/16


Symbol	Conditions	Values	Units
I _D	T _s = 80 °C	110	Α
I _{TSM} , I _{FSM}	T _{vi} = 25 °C; 10 ms	1350	А
	T _{vi} = 125 °C; 10 ms	1250	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	9100	A²s
	T _{vj} = 125 °C; 8,3 10 ms	7800	A²s
V_T, V_F	T _{vi} = 25 °C; I _T , I _F =150A	max. 1,6	V
V _{T(TO)} / VF(TO)	$T_{vj}^{\circ} = 125 ^{\circ}\text{C};$	max. 0,9	V
r _T	T _{vj} = 125 °C	max. 5	mΩ
$I_{DD}; I_{RD}$	T_{vj} = 125 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}	max. 20	mA
t _{gd}	$T_{vj} = {^{\circ}C}; I_G = A; di_G/dt = A/\mu s$		μs
t_{gr}	$V_D = \cdot V_{DRM}$		μs
(dv/dt) _{cr}	T _{vj} = 125 °C	max. 500	V/µs
(di/dt) _{cr}	T _{vj} = 125 °C; f = 5060 Hz	max. 50	A/µs
t_q	$T_{vj} = 125 ^{\circ}\text{C}; \text{ typ.}$	150	μs
I _H	T _{vj} = 25 °C; typ. / max.	- / 250	mA
I_L	T_{vj} = 25 °C; R_G = 33 Ω	- / 600	mA
V _{GT}	T_{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T _{vj} = 125 °C; d.c.	max. 6	mA
			K/W
			K/W
$R_{th(j-s)}$	per thiristor / diode	0,63	K/W
T_{vi}		- 40 + 125	°C
T _{stq}		- 40 + 125	°C
T _{solder}	terminals	260	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M _s	to heatsink	2,5	Nm
M _t			Nm
m	approx.	75	g
Case	SEMIPONT 5	G 61	




SKDH 145





SKDH 145

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.