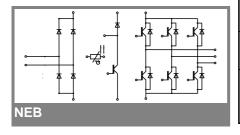


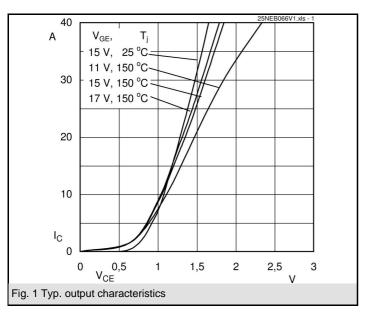
MiniSKiiP®2

1- phase bridge rectifier + brake chopper + 3-phase bridge inverter SKiiP 25NEB066V1

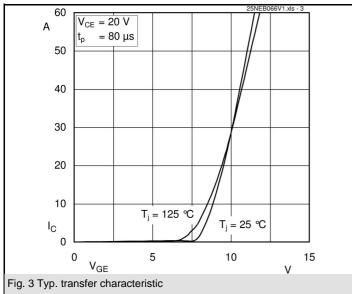

- Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

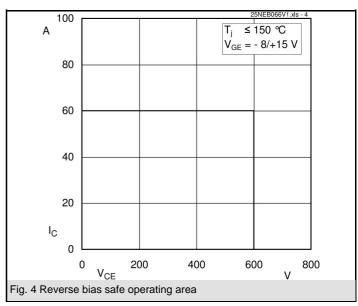
Typical Applications*

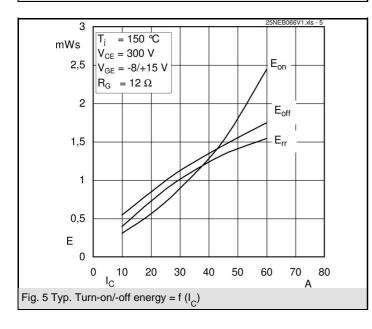
- Inverter up to 10 kVA
- Typical motor power 4,0 kW

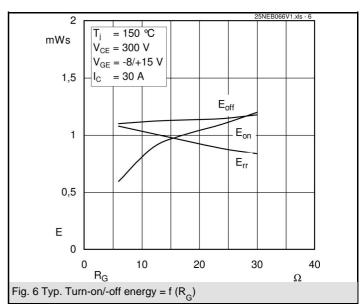

Remarks

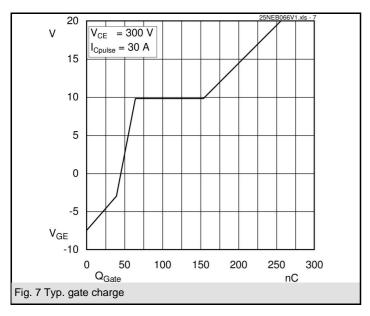
- Case temperature limited to T_C= 125°C max.
- Product reliability results are valid for T_i = 150°C
- SC data: $t_p \le 6 \mu s$; $V_{CE} \le 15 V$; T_j = 150°C, V_{CC} = 360 V V_{CEsat} , V_F = chip level

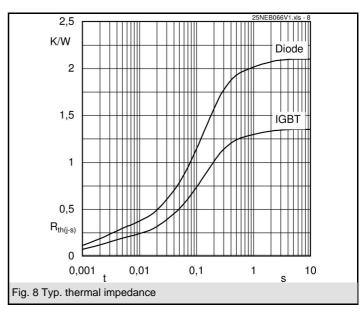


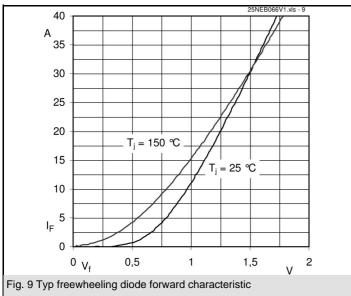

Absolute Maximum Ratings T _S = 25°C, unless otherwise specifi					
Symbol	Conditions	Values	Units		
IGBT - Inverter, Chopper					
V_{CES}		600	V		
I _C	$T_s = 25 (70) ^{\circ}C, T_i = 150 ^{\circ}C$	39 (27)	Α		
I _C	$T_s = 25 (70) ^{\circ}\text{C}, T_j = 175 ^{\circ}\text{C}$	43 (32)	Α		
I _{CRM}	t _p = 1 ms	60	Α		
V_{GES}		± 20	V		
Diode - Inverter, Chopper					
I _F	T _s = 25 (70) °C, T _i = 150 °C	33 (22)	Α		
I _F	$T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	39 (29)	Α		
I _{FRM}	t _p = 1 ms	60	Α		
Diode - Rectifier					
V_{RRM}		800	V		
I _F	T _s = 70 °C	46	Α		
I _{FSM}	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$	370	Α		
i²t	t_p = 10 ms, sin 180 °, T_j = 25 °C	680	A²s		
I _{tRMS}	per power terminal (20 A / spring)	40	Α		
T _j	IGBT, Diode	-40+175	°C		
T _{stg}		-40+125	°C		
V _{isol}	AC, 1 min.	2500	V		

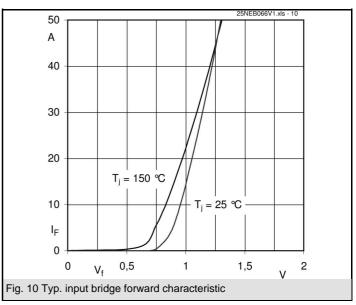

Characteristics T _S = 25°C, unless otherwise specified						
-	Conditions	min. typ.	max.	Units		
IGBT - Inverter, Chopper						
V _{CE(sat)}	$I_{Cnom} = 30 \text{ A}, T_j = 25 (150) ^{\circ}\text{C}$		1,85 (2,05)	V		
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 1 \text{ mA}$	5,8 0,9 (0,85)	1 (0.0)	V		
V _{CE(TO)}	T _j = 25 (150) °C T _i = 25 (150) °C	18 (27)	1 (0,9) 28 (38)	mΩ		
r _{CE}	$V_{CF} = 25 \text{ V}, V_{GF} = 0 \text{ V}, f = 1 \text{ MHz}$	1.6	28 (38)	nF		
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	0,19		nF		
C _{oes} C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	0,13		nF		
R _{CC'+EE'}	spring contact-chip T _s = 25 (150)°C	0,11		mΩ		
R _{th(j-s)}	per IGBT	1,35		K/W		
	under following conditions	20		ns		
t _{d(on)}	V _{CC} = 300 V, V _{GE} = -8V / 15 V	20		ns		
lt,	I _{Cnom} = 30 A, T _i = 150 °C	200		ns		
t _{d(off)} t _f	$R_{Gon} = R_{Goff} = 12 \Omega$	45		ns		
E _{on} (E _{off})	inductive load	0,9 (1,2)		mJ		
Diode - Inverter, Chopper						
$V_F = V_{EC}$	I _F = 30 A, T _i = 25 (150) °C	1,5 (1,5)	1,7 (1,7)	V		
V _F V _{EC}	T _i = 25 (150) °C	1 (0,9)	1,7 (1,7)	v		
r _T	T _i = 25 (150) °C	16,7 (20)		mΩ		
R _{th(j-s)}	per diode	2,1		K/W		
	under following conditions	46,3		A		
I _{RRM} Q _{rr}	I _{Fnom} = 30 A, V _R = 300 V	40,3		μC		
E _{rr}	V _{GE} = 0 V, T _i = 150°C	1,1		mJ		
-rr	$di_{F}/dt = 1880 \text{ A}/\mu\text{s}$.,.		1110		
Diada Da						
Diode - Re		1 44		l v		
V _F	I _{Fnom} = 25 A, T _j = 25 °C	1,1		V		
V _(TO)	T _j = 150 °C T _i = 150 °C	0,8 13		w mΩ		
r _T	per diode	1,5		K/W		
R _{th(j-s)}		1,5		IV/VV		
Temperature Sensor						
R _{ts}	3 %, T _r = 25 (100) °C	1000(1670)		Ω		
Mechanical Data						
w		65		g		
M_s	Mounting torque	2	2,5	Nm		

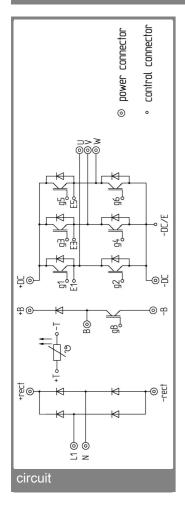


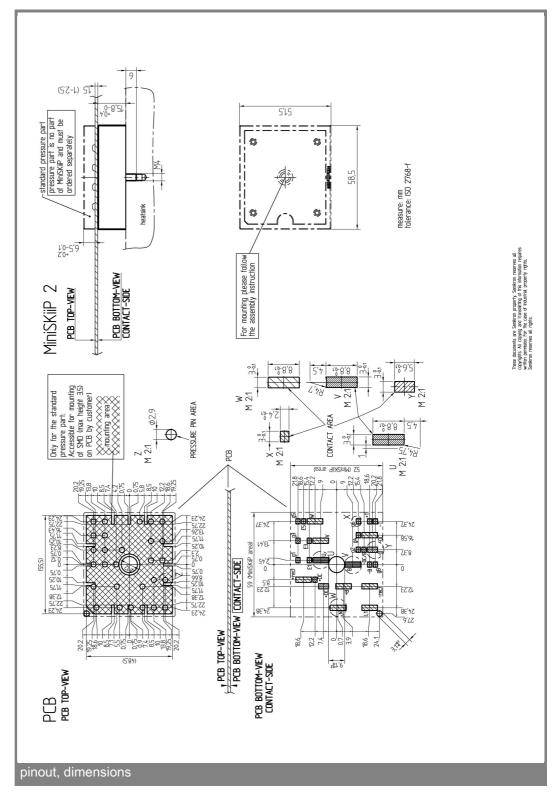












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.